
UNIT - 8
Reduced Instruction Set Computer Architecture

Lesson Structure
8.0 Objectives
8.1 Introduction
8.2 Introduction to RISC
 8.2.1 Importance of RISC Processors
 8.2.2 Reasons for Increased Complexity
 8.2.3 High Level Language Program Characteristics
8.3 RISC Architecture
8.4 The Use of Large Register File
8.5 Comments on RISC
8.6 RISC Pipelining
8.7 Summary
8.8 Questions
8.9 Suggested Readings

8.0 Objectives
After going through this Unit you should be able to :

 define and describe the reasons for developing RISC;
 describe the design principles of RISC;
 describe why large register file are important for fast processing;
 define and describe RISC pipelining and the optimisation in RISC pipelining.

Reduced Instruction Set Computer Architecture

[186]

8.1 Introduction
 We have already discussed the instruction set, register organization and
pipelining, and control unit organization in the previous unit. In the early years a
large instruction set, a large number of addressing modes and about 16-32 registers
were used. But it was required to make the instruction set simple and less. This led
to the development of a new type of computers called Reduced Instruction Set
Computer (RISC). In this unit, we will discuss about the RISC machines. Our
emphasis will be on discussing the basic principles of RISC and its pipelining along
with a comparative analysis of RISC and CISC architecture.
6.2 Introduction to RISC
 The RISC stands for Reduced Introduction Set Computer. To put simply, RISC
is a microprocessor which runs using a pipelining architecture to improve the
performance of a processor. Generally speaking this means faster machine, mostly
by improving MIPS (which stands for millions of instructions per sec, meaning higher
MIPS are better). It is important to note that improvement of MIPS isn't always
result in faster machine, as measurement of MIPS alone isn't good enough to
measure the processor. Some well known microprocessors such as SUN
Microsystems' SPARC microprocessor or DEC's Alpha microchips uses the RISC
concept to develop their microprocessors.
Few more improvements by using RISC processors besides improving MIPS are :
 1. A new microprocessor can be developed and tested more quickly if one

of its aims is to be less complicated.
 2. Operating system and application programmers who use the

microprocessor's instructions will find it easier to develop code with a
smaller instruction set.

 3. The simplicity of RISC allows more freedom to choose how to use the
space on a microprocessor.

 4. Higher-level language compilers produce more efficient code than
formerly because they have always tended to use the smaller set of
instructions to be found in a RISC computer.

 The aim of computer architects is to design computers which are cheaper and
more powerful than their earlier versions. If we review the history of computer
families, we find that the most common architectural change is the trend towards
even more complex machines. The processors are classified as RISC and CISC based
on the design philosophy. They are characterised by the number of instructions
supported, design of control unit (hardwired/programmed) and integration of other

Reduced Instruction Set Computer Architecture

[187]

resources inside the chip. The RISC processors are considered to support a smaller
list of simpler instructions and hardwired control unit which help in fast execution.,
as it takes shorter duration in finding the requisite instruction.
8.2.1 Importance of RISC Processors
 RISC processors exhibit certain distinct features compared to the CISC
processors. They include :
 Few Powerful Instructions
 Single clock Cycle execution (for most instruction)
 Register-based execution
 Highly Pipelined Superscalar Architecture
 Fixed Instruction Format and fixed length instruction
 Large register set or register windows
 Hardwired control Unit
 Highly Integrated Architecture

Examples of RISC processor
 RISC has fewer design bugs, its simple instructions reduce design time. Thus,
because of all the above important reasons RISC processors have become very
popular. Some of the RISC processors are :
i860, SPARC Processors
 Sun 4/350 SPARCserver 350, Sun 4/360 SPARCserver 360, Sun 4/370
SPARCserver 370, Sun 4/20, SPARCstation SLC, Sun 4/40 SPARCstation IPC, Sun
4/75, SPARCstation 2.
PowerPC Processors (Power refers to Optimisation with enhanced RISC).
 MPC755, MPC7400/7410, MPC745X, MPC7450, MPC8240, MPC8245.
Titanium-IA64 Processor
 RISC processors are used to build supercomputers for high performance
computing. For example, i860 family of processors are used to build PARAM
(PARALLEL Machine), PARALLEL Super Computer of Centre for Development of
Advanced Computing (C-DAC), India.
8.2.2 Reasons for Increased Complexity
 The reasons for increased complexity are :
Speed gap between Memory and CPU
 In the past, there was a big gap between the speed of a processor and
memory. Thus, a subroutine execution for an instruction, for example floating point
addition, may have to follow a lengthy instruction sequence. The question is, if we

Reduced Instruction Set Computer Architecture

[188]

make it a machine instruction then only one instruction fetch will be required and
rest will be done with control unit sequence. Thus, a "higher level" instruction can
be added to machines in a attempt to improve performance.
 However, today the Main memory is supported with Cache technology. Cache
memories have reduced the difference between the CPU and the memory speed and,
therefore, an instruction execution through a subroutine step may not be that
difficult. Pipelining can further enhance such speed.
Microcode technology versus VLSI Technology
 The control unit of a computer can be constructed using two ways: create
micro-program that execute micro-instructions or build circuits (hardwired) for each
instruction execution. Micro-programmed control allows the implementation of
complex architectures more cost effective than hardwired control as the cost to
expand an instruction set is very small, only a few more microinstructions for the
control store. Thus it may be reasoned that moving subroutines like string editing,
integer to floating point number conversion and mathematical evaluations such as
polynomial evaluation to control unit micro-program is more cost effective.
Code Density versus Fast execution of programs
 The memory was very large and expensive in the older computer. Thus there
was a need of less memory utilization, that is, it was cost effective to have smaller
compact programs. Thus, it was thought that the instruction set should be more
complex, so that programs are smaller. However, increased complexity of instruction
sets had resulted in instruction sets and addressing modes requiring more bits to
represent them. It is stated that the code compaction is important, but the cost of
10 percent more memory is often far less than the cost of reducing code by 10
percent out of the CPU architecture innovations.
 The smaller programs are advantageous because they require smaller RAM
space. However, today memory is very inexpensive, this potential advantage today is
not so compelling. More important, small programs should improve performance
because fewer instructions mean fewer instruction bytes to be fetched.
Support for High-Level Language
 With the advent and use of more and more higher level languages,
manufactures had provided more powerful instructions to support them. It was
argued that a stronger instruction set would reduce the software crisis and would
simplify the compilers. Another important reason for such a movement was the
desire to improve performance.
 However, even though the instructions that were closer to the high level
languages were implemented in Complex Instruction Set Computers (CISCs), still it

Reduced Instruction Set Computer Architecture

[189]

was hard to exploit these instructions since the compliers were needed to find those
conditions that exactly fit those constructs. In addition, the task of optimising the
generated code to minimise code size, reduce instruction execution count, and
enhance pipelining is much more difficult with such a complex instruction set.
 Another motivation for increasingly complex instructions sets was that the
complex HLL operation would execute more quickly as a single machine instruction
rather than as a series of more primitive instructions. CISC makes the more complex
control unit with larger micro program control store to accommodate a richer
instruction set. This increases the execution time for simpler instructions. Thus, it is
far from clear that the trend to complex instruction sets is appropriate.
8.2.3 High Level Language Program Characteristics
 A high-level language system can be implemented mostly by hardware or
mostly by software, provided the system hides any lower level details from the
programmer. Thus, a cost-effective system can be built by deciding what pieces of
the system should be in hardware and what pieces in software. To ascertain the
above, it may be a good idea to find program characteristics on general computers.
Some of the basic findings about the program characteristics are :

Variables Operations Procedure Calls
Integer Constants 10-25% Simple assignment 35-45% Most time consuming operation
Scalar Variables 50-60% Function call 10-15% Most of the functions are called with fewer arguments and have fewer local variables
Data Structures 15-30%
(Array, Stacks, Queues etc)

Looping constructs 2-6%

 Conditional statements 35-45%
 GOTO FEW Others 1-5%

Figure 1 : Common Program Characteristics
* (The data used above are approximate figures)
Observations

 Integer constants appeared almost as frequently as arrays or structures.
 Most of the scalars were found to be local variables whereas most of the

arrays or structures were global variables.
 Most of the dynamically called procedures pass lower than six arguments.
 The numbers of scalar variables are less than six.

Reduced Instruction Set Computer Architecture

[190]

 A good machine design should attempt to optimize the performance of most
time consuming features of high-level programs.

 Performance can be improved by more register references rather than having
more memory references.

 There should be an optimied instructional pipeline such that any change in
flow of execution is taken care of.

8.3 RISC Architecture
 Some important considerations of RISC architecture are :
1. The RISC functions are to be kept simple as possible until there is the

requirement of complexity. If new operations need to be added then it should
be evaluated that if execution time of an instruction increases by 10 per cent
then the size of the code should reduce 10 per cent. This is required to
balance the simplicity of the code.

2. A simple instruction may be executed at the same speed as that of a micro-
instruction because micro-instructions stored in the control unit cannot be
faster than simple instructions. This is due to the fact that the cache is built on
the same technology as control unit.

3. The runtime library of RISC has all the characteristics of functions in
microcode, except that it is easier to change. In general micro codes are
difficult to change.

4. Pipelined execution gives a peak performance of one instruction every step.
The longest step determines the performance rate of the pipelined machine,
so ideally each pipeline step should take the same amount of time.

5. RISC compilers try to remove as much work as possible during compile time so
that simple instructions can be used. For example, RISC compilers try to keep
operands in registers so that simple register-to-register instructions can be
used. RISC compilers keep operands that will be reused in register, rather than
repeating a memory access or a calculation. They, therefore, use LOADs and
STOREs to access memory so that operands are not implicitly discarded after
being fetched.

 Therefore, the RISC architecture were designed with the following features :
 One instruction per cycle : A machine cycle is the time taken to fetch two
operands from register, perform the ALU operation on them and store the result in a
register. Thus, RISC instruction execution takes about the same time as the
microinstructions on CISC machines. With such simple instruction execution rather

Reduced Instruction Set Computer Architecture

[191]

than micro-instructions, it can use fast logic circuits for control unit, thus increasing
the execution efficiency further.
 Register-to-register operands : In RISC machines the operation that
access memories are LOAD and STORE. All other operands are kept in registers. This
design feature simplifies the instruction set and, therefore, simplifies the control
unit. For example, a RISC instruction set may include only one or two ADD
instructions (e.g. integer add and add with carry); on the other hand a CISC
machine can have 25 add instructions involving different addressing modes. Another
benefit is that RISC encourages the optimization of register use, so that frequently
used operands remain in registers.
 Simple addressing modes : Another characteristic is the use of simple
addressing modes. The RISC machines use simple register addressing having
displacement and PC relative modes. More complex modes are synthesized in
software from these simple ones. Again, this feature also simplifies the instruction
set and the control unit.
 Simple instruction formats : RISC uses simple instruction formats.
Generally, only one or a few instruction formats are used. In such machines the
instruction length is fixed and aligned on word boundaries. In addition, the field
locations can also be fixed. Such an instruction format has a number of benefits.
With fixed fields, opcode decoding and register operand accessing can occur in
parallel. Such a design has many advantages. These are :

 It simplifies the control unit
 Simple fetching as memory words of equal size are to be fetched
 Instructions are not across page boundaries.

 Thus, RISC is potentially a very strong architecture. It has high performance
potential and can support VLSI implementation. Let us discuss these points in more
detail.
 Performance using optimizing compilers : As the instructions are simple
the compilers can be developed for efficient code organization also maximizing
register utilization etc. Sometimes even the part of the complex instruction can be
executed during the compile time.
 High performance of Instruction execution : While mapping of HLL to
machine instruction the compiler favours relatively simple instructions. In addition,
the control unit design is simple and it uses little or no micro-instructions, thus could
execute simple instructions faster than a comparable CISC. Simple instructions
support better possibilities of using instruction pipelining.

Reduced Instruction Set Computer Architecture

[192]

 VLSI Implementation of Control Unit : A major potential benefit of RISC
is the VLSI implementation of microprocessor. The VLSI Technology has reduced the
delays of transfer of information among CPU components that resulted in a
microprocessor. The delays across chips are higher than delay within a chip; thus, it
may be a good idea to have the rare functions built on a separate chip. RISC chips
are designed with this consideration. In general, a typical microprocessor dedicates
about half of its area to the control store in a micro-programmed control unit. The
RISC chip devotes only about 6% of its area to the control unit. Another related
issue is the time taken to design and implement a processor. A VLSI processor is
difficult to develop, as the designer must perform circuit design, layout, and
modeling at the device level. With reduced instruction set architecture, this
processor is far easier to build.
8.4 The Use of Large Register File
 The register storage is the faster storage device, faster than even the main
memory and the cache. Thus, a strategy is needed that will allow the most
frequently accessed operands to be kept in registers and to minimize register
memory operations.
 Two basic approaches are possible, one based on the software and the other
based on the hardware, The software approach is to rely on the compiler to
maximize register usage. The compiler will attempt to allocate the registers to those
variables that will be used most in the given time period. This approach requires the
use of sophisticated program-analysis algorithms. The hardware approach is simply
to use more registers so that more variables can be held in registers for longer
periods of time. RISC follows the hardware approach.
 Since most operand references are to local scalars, the obvious approach is to
store these in registers, with perhaps a few registers reserved for global variables.
The problem is the definition of local changes with each procedure call and return,
operations that occur frequently. On every call, local variables must be saved from
the registers into memory, so that the registers can be reused by the called
program. Furthermore, the parameters must be passed. On return, the variables of
the parent program must be restored and the results must be passed back to the
parent program.
 RISC takes care of these with the help of register windows. Multiple small sets
of registers are used, each assigned to different procedure. A procedure call
automatically switches the CPU to use a different fixed size window of registers,
rather than saving registers in memory. Windows for adjacent procedures are
overlapped to allow parameter passing.

Reduced Instruction Set Computer Architecture

[193]

Physical Register

HIGHA

LOCALA

LOCALA

LOCALC

LOWC

LOCAL

LOWA

LOWA

137
132

131
122

115
104

99
10

19
14

9
0

121
116

105
102

HIGHA

HXIHC

PROC A
Logical Register

R31A
R26A
R25A
R16A
R15A
R10A

PROC B
R31B

BR26
R25B

BR16
R15B

BR10
PROC C

R31C
R26C
R25C

CR16
R15C

CR10
R9A

AR0
R9B

BR0
R9C

CR0
Figure 2 : Use of three overlapped register windows

 Thus the register file, organized in the form as above, is small fast register
buffer that holds most of the variables that are likely to be used heavily. From this
point of view the register file acts almost like a caches memory.
Characteristics of large-register-file and cache organizations

Large Register File Cache
Hold local variables for almost all functions. This saves time. Recently used local variables are fetched from main memory for any further use. Dynamic use optimises memory.
The variables are individual. The transfer from memory is block wise.
Global variables are assigned by the compilers. It stores recently used variables. It cannot keep track of future use.
Save/restore needed only after the maximum call nesting is over (that is n–1 open windows).

Save/restore based on cache replacement algorithms.
It follows faster register addressing It is memory addressing.

Table 1 : Characteristics of Large-Register file and cache organisation

Reduced Instruction Set Computer Architecture

[194]

 All points above basically show comparative equality. The basic difference is
due to addressing overhead of the two approaches.
 The following figure shows the difference. Small register (R) address is added
with current window Pointer W#. This generates the address in register file, which is
decoded by decoder for register access. On the other hand Cache reference will be
generated from a long memory address, which first goes through comparison logic
to ascertain the presence of data, and if the data is present it goes through the
select circuit. Thus, for simple variables access register file is superior to cache
memory.
 However, even in RISC computer, performance can be enhanced by the
addition of instruction cache.

Instruction

W#

R

Decoder

Registers

Data

(a) Windows based Register file

Instruction Cache
A

Compare

Tag Data

Select
DATA

A >> R

(b) Cache Reference

Figure 3 : Referencing a local Simple Variables

Reduced Instruction Set Computer Architecture

[195]

8.5 Comments on RISC (Comparative Analysis of RISC and
CISC)

 Some of the comments that are asked for RISC architectures are :
CISCs provide better support for high-level languages than RISC as they
include high-level language constructs.
 Though CISC architecture tries to narrow the gap between assembly and High
Level Language (HLL), however, this support is costly. In fact the support can be
measured as the inverse of the costs of using typical HLL constructions on a
particular machine. If the architect provides a feature that looks like the HLL
construct but runs slowly, or has many options, the compiler writer may omit the
feature, or even, the HLL programmer may avoid the construct, as it is slow and
cumbersome. Thus, the comment above does not hold.
It is more difficult to write a compiler for a RISC than a CISC.
 If an instruction can be executed in more ways than one, then more cases
must be considered. For it the compiler writer needed to balance the speed of the
compilers to get good code. In CISCs, compilers need to analyze the potential usage
of all available instruction, which is time consuming. Thus, it is recommended that
there is at least one good way to do something. In RISC, there are few choices; for
example, if an operand is in memory it must first be loaded into a register. Thus,
RISC requires simple case analysis, which means a simple compiler, although more
machine instructions will be generated in each case.
RISC is tailored for C language and will not work well with other high level
languages.
 But the studies of other high level languages found that the most frequently
executed operations in other languages are also the same as simple HLL constructs
found in C, for which RISC has been optimized Unless a HLL changes the paradigm
of programming we will get similar result.
 The good performance is due to the overlapped register windows; the reduced
instruction set has nothing to do with it.
 Certainly, a major portion of the speed is due to the overlapped register
windows of the RISC that provide support for function calls. However, please note
this register windows is possible due to reduction in control unit size from 50 to 6

Reduced Instruction Set Computer Architecture

[196]

per cent. In addition, the control is simple in RISC than CISC, ths further helping the
simple instructions to execute faster.
8.6 RISC Pipelining
 Pipelining, a standard feature in RISC processors, is much like an assembly
line. Because the processor works on different steps of the instruction at the same
time more instructions can be executed in a shorter period of time. Different
processors have different numbers of steps, they are basically variations of these
five, used in the MIPS R3000 processor :
 1. fetch instructions from memory
 2. read registers and decode the instruction
 3. execute the instruction or calculate an address
 4. access an operand in data memory
 5. write the result into a register
 Pipelining is used for enhancing the overall performance. Let us consider
Instruction in the context of RISC architecture. In RISC machines most of the
operations are register. Therefore, the instructions can be executed in two phases :
 F : Instruction Fetch to get the instruction.
 E : Instruction Execute on register operands and store the results in register.
 In general, the memory access in RISC is performed through LOAD and STORE
operations. For such instructions the following steps may be needed :
 F : Instruction Fetch to get the instruction
 E : Effective address calculation for the desired memory operand
 D : Memory to register or register to memory data transfer through bus.
 Please note that the pipeline above is not running at its full capacity. This is
because of the following problems :

 We are assuming a single port memory thus only one memory access is
allowed at a time. Thus, Fetch and Data transfer operations cannot occur at
the same time. Thus, you may notice blank in the time slot 3, 5 etc.

 The last instruction is an unconditional jump. Please note that after this
instruction the next instruction of the calling program will be executed.
Although not visible in this example a branch instruction interrupts the
sequential flow of instruction. Thus, causing inefficiencies in the pipelined
execution.

Reduced Instruction Set Computer Architecture

[197]

 This pipeline can simply be improved by allowing two memory accesses at a
time.
Pipeline optimization
 In order to make processors even faster, various methods of optimizing
pipelines have been devised.
 Super-pipelining refer to dividing the pipeline into more steps. The more pipe
stages there are, the faster the pipeline is because each stage is then shorter.
Ideally, a pipeline with five stages should be five times faster than a non-pipelined
processor (or rather, a pipeline with one stage). The instructions are executed at the
speed at which each stage is completed, and each stage takes one fifth of the
amount of time that the non-pipelined instruction takes. Thus, a processor with an
8-step pipeline (the MIPS R4000) will be even faster than its 5-step counterpart. The
MIPS R4000 chops its pipeline into more pieces by dividing some steps into two.
Instruction fetching, for example, is now done in two stages rather than one. The
states are as shown :
 1. Instruction Fetch (First Half)
 2. Instruction Fetch (Second Half)
 3. Register Fetch
 4. Instruction Execute
 5. Data Cache Access (First Half)
 6. Data Cache Access (Second Half)
 7. Tag Check
 8. Write Back
 Superscalar pipelining involves multiple pipelines in parallel. Internal
components of the processor are replicated so it can launch multiple instructions in
some or all of its pipeline stages. The RISC System/6000 has a forked pipeline with
different paths for floating-point and integer instructions. If there is a mixture of
both types in a program, the processor can keep both forks running simultaneously.
Both types of instructions share two initial stages (Instruction Fetch and Instruction
Dispatch) before they fork. Often, however, superscalar pipelining refers to multiple
copies of all pipeline. Many of today's machines attempt to find two to six
instructions that it can execute in every pipeline stage. If some of the instructions
are dependent, however, only the first instruction or instructions are issued.

Reduced Instruction Set Computer Architecture

[198]

 Dynamic pipelines have the capability to schedule around stalls. A dynamic
pipeline is divided into three units: the instruction fetch and decode unit, five to
ten execute or functional units, and a commit unit. Each execute unit has
reservation stations, which act as buffers and hold the operands and operations.

Integer

Reservationstation Reservationstation

Integer Floatingpoint Load/store

Reservationstation Reservationstation

Instruction fetch anddecode unit

Commit unit In-order commit

Out-of-orderexecuteFunctionalunits

In-order issue

Figure 4 : Dynamic Pipelining

 While the functional units have the freedom to execute out of order, the
instruction fetch/decode and commit units must operate in-order to maintain simple
pipeline behaviour. When the instruction is executed and the result is calculated, the
commit unit decides when it is safe to store the result. If a stall occurs, the
processor can schedule other instructions to be executed until the stall is resolved.
This, coupled with the efficiency of multiple units executing instructions
simultaneously, makes a dynamic pipeline an attractive alternative.
 RISC machines can employ a very efficient pipeline scheme because of the
simple and regular instructions. Like all other instruction pipelines RISC pipeline
suffer from the problems of data dependencies and branching instructions. RISC
optimizes this problem by using a technique called delayed branching.
 One of the common techniques used to avoid branch penalty is to pre-fetch
the branch destination also. RISC follows a branch optimization technique called
delayed jump as shown in the example given below :

Reduced Instruction Set Computer Architecture

[199]

LOAD R1 M (1) F E D
LOAD R2 M (2) F E D
SUB RS R1 – R2 F E
IF RS < 0 Return F E
ADD RA R1 + R2 F E
STOR M(A) F E D
RETURN F E

Figure 5 : Delayed Branch
 Finally, let us summarize the basic differences between CISC and RISC
architecture. The following table lists these differences :
 CISC RISC
1 Complex instructions taking multiple

cycles
Simple instructions taking 1 cycle

2 Any instruction may reference
memory

Only LOADS/STORES reference
memory

3 Not pipelined or less pipelined Highly pipelined
4 Instructions interpreted by the

microprogram
Instructions executed by the
hardware

5 Variable format instructions Fixed format instructions
6 Many instructions and modes Few instructions and modes
7 Complexity in the microprogram Complexity is in the compiler
8 Single register set Multiple register sets

Table 2 : Difference between RISC and CISC
Source :
www.egr.msu.edu/classes/ece482/Teams/97fall/xdesign2/arm/andy.doc
8.7 Summary
 In this unit we have given details of RISC. RISC represents new styles of
computers that take less time to build yet provide a higher performance. While
traditional machines support High Level Languages (HLLs) with instruction, this

Reduced Instruction Set Computer Architecture

[200]

machine supports the use of HLLs with instructions that HLL compilers can use
efficiently. The loss of complexity has not reduced RISC's functionality; the chosen
subset, especially when combined with the register window scheme, emulates more
complex machines. It also appears that we can build such a single chip computer
much sooner and with much less effort than traditional architectures.
 Thus, we see that because of all the features discussed above, the RISC
architecture should prove to be far superior to even the most complex CISC
architecture. In this unit we have also covered the details of the pipelined features
of the RISC architecture, which further strengthen our arguments for the support of
this architecture.
8.8 Questions
 1. What is RISC ? Describe the importance of RISC processor.
 2. What is the for Increased complexity ? Explain.
 3. Explain some important considerations of RISC architecture.
 4. What is Large Register File ? Describe the characteristics of Large

Register file and cache organisation.
 5. Explain RISC Pipelining with an example. What is delayed branching ?
8.9 Suggested Readings
1. Computer Architecture and Organisation by John P. Hayes.

