
Gustav Doetsch 

Introduction 
to the Theory and Application of the 

Laplace Transformation 

With 51 Figures 
and a Table of Laplace Transforms 

Translation by 

Walter Nader 

Springer-Verlag Berlin Heidelberg New York 1974 



Gustav Doetsch 

Professor Emeritus of Mathematics, University of Freiburg 

Walter Nader 

Assistant Professor, University of Alberta, Canada 

Translation of the German Original Edition: 

Einfuhrung in. Theorie und Anwendung der Laplace-Transformation 
Zweite, neubearbeitete 

und erweiterte Auflage (Mathematische Reibe, Band 24, Sarnmlung LMW) 

Birkhauser Verlag Basel, 1970 

AMS SUbject Classification (1970): 44AlO, 42A68, 34A10, 
34A25, 35A22, 30A84 

ISBN -13: 978-3-642-65692-7 e-ISBN -13: 978-3-642-65690-3 
DOl: 10.1007/978-3-642-65690-3 

ISBN -13: 978-3-642-65692-7 

This work is subject to copyright. 
All rights are reserved, whether the whole or part of the material is concerned, 

specifically those of translation, 
reprinting, re-use of illustrations, broadcasting, 

reproduction by photocopying machine or similar means, and storage in data banks. 
Under § 54 of the German Copyright Law where copies are made for other than private use, 

a fee is payable to the publisher, 
the amount of the fee to be determined by agreement with the publisher. 

© by Springer-Verlag Berlin Heidelberg 1974. 
Softcover reprint of the hardcover 1st edition 1974. 
Library of Congress Catalog Card N'umber 73-10661. 



Preface 

In anglo-american literature there exist numerous books, devoted to the application of 
the Laplace transformation in technical domains such as electrotechnics, mechanics etc. 
Chiefly, they treat problems which, in mathematical language, are governed by ordi
nary and partial differential equations, in various physically dressed forms. The 
theoretical foundations of the Laplace transformation are presented usually only in a 
simplified manner, presuming special properties with respect to the transformed func
tions, which allow easy proofs. 

By contrast, the present book intends principally to develop those parts of the 
theory of the Laplace transformation, which are needed by mathematicians, physicists 
a,nd engineers in their daily routine work, but in complete generality and with detailed, 
exact proofs. The applications to other mathematical domains and to technical prob
lems are inserted, when the theory is adequately· developed to present the tools 
necessary for their treatment. 

Since the book proceeds, not in a rigorously systematic manner, but rather from 
easier to more difficult topics, it is suited to be read from the beginning as a textbook, 
when one wishes to familiarize oneself for the first time with the Laplace transforma
tion. 

For those who are interested only in particular details, all results are specified in 
"Theorems" with explicitly formulated assumptions and assertions. 

Chapters 1-14 treat the question of convergence and the mapping properties of the 
Laplace transformation. The interpretation of the transformation as the mapping 
of one function space to another (original and image functions) constitutes the dom
inating idea of all subsequent considerations. 

Chapters 14-22 immediately take advantage of the mapping properties for the 
solution of ordinary differential equations and of systems of such equations. In this 
part, especially important for practical applications, the concepts and the special cases 
occurring in technical literature are considered in detail. Up to this point no complex 
function theory is required. 

Chapters 23-31 enter the more difficult parts of the theory. They are devoted to the 
complex inversion integral and its various evaluations (by deformation of the path of 
integration and by series developments) and to the Parseval equation. In these con
siderations the Fourier transformation is used as an auxiliary tool. Its principal prop
erties are explained for this purpose. Also the question of the representability of a func
tion as a Laplace transform is answered here. 

Chapters 32-37 deal with a topic which is of special interest for both theory and 
application and which is commonly neglected in other books: that is the deduction of 
asymptotic expansions for the image function from properties of the original function, 
and conversely the passage from the image function to asymptotic expansions of the 
original function. In the latter case the inversion integral with angular path plays a 
decisive role; therefore its properties are developed, for the first time in the literature, 
in full detail. In technical problems this part provides the basis for the investigation of 
the behaviour of physical systems for large values of the-time variable. 

Chapter 38 presents the ordinary differential equation with polynomial coefficients. 
Here, again, the inversion integral with angular path is used for the contruction of the 
classical solution. 
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As examples of boundary value problems in partial differential equations, Chapter 39 
treats the equation of heat conduction and the telegraph equation. The results of 
Chapters 35-37 are used to deduce the stationary state of the solutions, which is of 
special interest for engineering. 

In Chapter 40 the linear integral equations of convolution type are solved. As an 
application the integral and the derivative of non-integral order in the intervall (0,00) 
are defined. 

Not only to procure a broader basis for the theory, but also to solve certain prob
lems in practical engineering in a satisfactory manner, it is necessary to amplify the 
space of functions by the modern concept of distribution. The Laplace transformation 
can be defined for distributions in different ways. The usual method defines the Fourier 
transformation for distributions and on this basis the Laplace transformation. This 
method requires the limitation to "tempered" distributions and involves certain 
difficulties with regard to the definition of the convolution and the validity of the "con
volution theorem". Here, however, a direct definition of the Laplace transformation is 
introduced, which is limited to distributions "of finite order". With this definition the 
mentioned difficulties do not appear; moreoverithas the advantage that in this partial 
distribution space, a necessary und sufficient condition for the representability of an 
analytic function as a Laplace transform can be formulated, which is only sufficient but 
not necessary in the range of the previous mentioned definition. 

The theory of distributions does not only make possible the legitimate treatment of 
such physical phenomena as the "impulse", but also the solution of a problem that has 
caused many discussions in the technical literature. When the initial value problem for 
a system of simultaneous differential equations is posed in the sense of classical mathe
matics, the initial values are understood as limits in the origin form the right. In general, 
this problem can be solved only if the initial values comply with certain "conditions of 
compatibility", a requirement which is fulfilled seldom in practice. Since, however, 
also in such a case the corresponding physical process ensues, someone mathematical 
description must exist. Such a description is possible, when 1. the functions are replaced 
by distributions, which are defined always over the whole axis and not only over the 
right half-axis, which is the domain of the initial value problem, and 2. the given initial 
values are understood as limits from the left; they originate, then, from the values of the 
unknowns in the left half-axis, Le. from the past of the system, which agrees exactly 
with the physical intuition. 

Instead of a general system, whose treatment would turn out very tedious, the sys
tem of first order for two unknown functions is solved completely with all details as a 
pattern, whereby already all essential steps are encountered. 

This work represents the translation of a book which appeared in first edition in 
1958 and in amplified second edition in 1970 in "BirkhauserVerlag" (Basel und Stutt
gart). The translation, which is based on the second edition, was prepared by Professor 
Dr. Walter Nader (University of Alberta, Edmonton, Canada) with extraordinary 
care. In innumerable epistolary discussions with the author, the translator has attempt
ed to render the assertions of the German text in an adequate English structure. For his 
indefatigable endeavour I wish to express to Prof. Nader my warmest thanks. 

Riedbergstrasse 8 
D-7800 Freiburg L Br. 
Western Germany 

GUSTAV DOETSCH 
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1. Introduction of the Laplace Integral 
from Physical and Mathematical Points of View 

The integral j e-st f(t) dt 

o 

is known as the Laplace integral; t, the dummy variable of integration, scans the 
real numbers between 0 and 00, and the parameter s may be real-valued or com
plex-valued. Should this integral converge for some values of s, then it defines a 
function F(s): '" 
(1) f e-st f(t) dt = F(s) . 

o 
In Chapter 4 it will be shown how the correspondence between the functions 

f (t) and F (s) may be visualized as a "transformation", the Laplace transformation. 
The Laplace integral is classified with mathematical objects like power series 

and Fourier series, which also describe functions by means of analytical expressions. 
Like these series, the Laplace integral was originally investigated in the pursuit of 
purely mathematical aims, and it was subsequently used in several branches of .the 
sciences. Experience has demonstrated that with regard to possible applications, 
the Laplace integral excels these series. The Laplace integral serves as an effective 
tool, particularly in those branches that are of special interest not only to the 
mathematician but also to the physicist and to the engineer. This is, in part, due 
to the clear physical meaning of the Laplace integral, which will be explained in 
the sequel. 

We begin with the well known representation of some function f(x) in the finite 
interval (- n, + n) by a Fourier series. Instead of the real representation 

(2) a '" -t + L (an cos n x + bn sin n x) 
.. _1 

employing the re~ oscillations cosnx and sinnx, we prefer here, for practical rea
sons, the complex representation! 

1 +'" . 
(8) f(x) = 2n L en e,n ... , 

8==-(1) 

for which we combined the respective real oscillations, to compose the complex 

1 The factor 1/2" is included with (3) to establish complete analogy to formulae (5) and (12), which are 
usually written with this factor. The real oscillations cosnx and sinnx form a complete, orthogonal set 
forn = 0,1,2,3, ... ;forthecomplexosciJIationse1nz,weneedn = 0, ±1, ± 2, ± 3, ...• to produce the 
complete, orthogonal set. It is for this reason that in (3) the summation of n extends between - 00 

and + 00. 



2 1. Introduction of the Laplace Integral 

oscillations e'lnz. The Fourier coefficients Cn are determined by means of the 
formula2 +n 

(4) cn = f f(x) e-hlz dx . 
-n 

The expansion (3) converges and represents f (x)3 under quite general conditions, 
for instance, when f (x) is composed of a finite number of monotonic pieces. From 
a physical point of view, Eq. (3) indicates that f(x) may be constructed as a super
position of complex oscillations having frequencies n = 0, ± 1 ± 2, ± 3, ... , the 
harmonic oscillations. The Fourier coefficients Cn are, in general, complex-valued, 

ili~~ ~=~~~ 
With this, the nth term of the series (3) becomes 

r" ei(nz+IPn), 

which shows that the oscillation of frequency n has amplitude rn (when disregarding 
the factor 1/2:n;), and the initial phase angle qJ". In Physics, the totality of the am
plitudes rn together with the phase angles qJn is called the spectrum of the physical 
phenomenon which is described by f (x) in ( - :n;, +:n;). This spectrum is completely 
described by the sequence of the cn, and we call the Fourier coefficients Cn the 
spectral sequence of f(x). 

Thus Eqs. (3) and (4) may be interpreted as follows. 
By means of (4) one obtains for the given function f(x) the spectral sequence c,,; 

using these cn, one can reconstruct f(x) as a superposition of harmonic functions with 
frequencies n = 0, ± 1, ± 2, ± 3, ... , as shown in (3). 

Nowadays, complex oscillations are used extensively in theoretical investiga
tions, a development fostered by work in electrical engineering. Differentiation of 
real oscillations, sinnx and cosnx,leads to an interchange of these; differentiation 
of a complex oscillation, ehlz, merely reproduces it. Hence it is more convenient 
to work with complex oscillations. Interpreting x as time, one envisages the com
plex oscillation z = r"et(nz+ IPn) as the motion of a point of the circle of radius rn, 
centred at the origin of the complex z-plane; the point moves with constant angu
lar velocity; that is the arc covered is proportional to x. For n > 0, this motion is 
in the mathematically positive sense about the origin; for n < 0, the motion is in 
the opposite, mathematically negative sense. That~. a complex oscillation with a 
negative frequency affords a meaningful physical interpretation, which is impossible 
with real oscillations. The orthogonal projections of the motion of the point into 
the real axis and into the imaginary axis respectively, produce the real component 
and the imaginary component of the complex oscillation. These two components 
correspond to the real oscillations cos nx and sinnx, which are the ones actually 
observed in physical reality. 

a For real-valued 1 (x) we find e-n = C;;; hence eo is real-valued. Combining the conjugate terms for -" 
and +n, and with en = "(a,, - ib .. ), we produce the conventionally employed form of the Fourier 

expansion: c. 1 CI) 2"" ( i"" a. CI) ( b') 2 + 2 E ill. en e ) = 2' +-E an cos n x + "SIn n x • 
n n n~l ,,-1 

3 At discontinuity points x, where 1 (x-) '* 1 (x+) , that is, where the function "jumps", the Fourier series 
converges to the mean of the limits: [f (x-) + 1 (x+)]/2. 
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If the independent variable represents time, then one is, in most cases, not 
interested in finite intervals, for time extends conceptually between - 00 and 
+ 00. For the infinite interval (- 00, + (0), the Fourier series (3) is to be replaced 
by the Fourier integral4 +<0 

(5) I(t) = 21n f F(y) eity dy, 
-co 

employing the letter t instead of the letter x, to hint at the implied time. The func
tion F (y) in (5) is also determined by a Fourier integral 

+co 

(6) F (y) = f I (t) r fyt dt. 
-co 

Complex oscillations of an frequencies are involved in this case; one cannot con
struct I (t) by merely superimposing a sequence of harmonic oscillations. Therefore, 
the sum in (3) had to be replaced by the integral in (5). The complex oscillation of 
frequency y is multiplied by the infinitesimal factor F(y)dy, which corresponds to 
the coefficient Cn of the Fourier series (3). Writing the generally complex F (y) 
in the form 

one finds: 

F(y) = r(y) e£<p(t/) , 

+00 

I(t) = _1_ S r(y) e£(lI t +<p(y» dy . 
2n 

-00 

The complex oscillation of frequency y has the amplitude r (y) dy = iF (y) I dy 
(again disregarding the factor 1/2n), and the initial phase angle «p(y) = arcF(y).5 
For this reason, we call the function F (y) the spectral lunction or the spectral den
sity of I(t). 

For the finite interval (- n, + n), we obtained the discrete spectrum; that is, 
the frequencies n = 0, ± 1, ± 2, ± 3, .... For the infinite interval (- 00, + (0), 
we find a continuous spectrum for the frequencies y, with - 00 < y < + 00. 

We stated the formulae (5) and (6) formally, without regard to required condi
tion~, the discussion of which we defer to Chapter 24. However, when comparing 
formulae (5) and (6) to formulae (3) and (4), we immediately detect a serious re
striction: the spectral sequence Cn is meaningful for every integrable function I (x) ; 
the spectral function F (y) exists only if for t approaching - 00, as well as + 00, 

the function I(t) behaves in a manner'so that the integral (6) converges. This is not 
the case for some of the simplest and most commonly encountered functions. For 
instance, the integral (6) does' not converge for I(t) == 1, or I(t) == etwt. 

However, it is possible to overcome this difficulty. So far, we permitted t to 
vary between - 00 and + 00. Yet, for all cases of interest to the physicist, the 

4 As for the Fourier series, we obtain for the Fourier integral the mean of the limits, (f(x-) + l(x+)]/2, 
at those discontinuity points where 1 (x-) *' I(x+). 

5 We.l'refer the use of "arc:", arcus of I, for the angle of the vector representation of a complex number; 
this designation is more descriptive than the conventional "argument", which is also used to designate 
the argument of a function. 



4 1. Introduction of the Laplace Integral 

process under investigation begins at some specified instant, say t = 0, and accord
ingly t varies between 0 and + 00, thus restricting the infinite interval to (0, + (0). 
This new situation may be considered as a special case simultaneously with the 
above unrestricted case, provided we define I(t) = 0 for t < O. We find then for 
the spectral function: co 

F(y) = f e-iyt I(t)dt. 
o 

Nevertheless, the integral stlll does not converge tor the above mentioned func
tions: "1, and e'wt. However, we may now implement a fruitful modification: 
rather than studying some given function I (t), we investigate the entire family of 
functions e-xt/(t), admitting all x > X, for some specified, fixed X. The spectral 
function of e-xt/(t) obviously depends upon bothy and x, and we write, therefore, 

(7) 
co 

F x (y) = f e-iyt [e-st I (t)] dt. 
o 

For x > 0, the integral (7) converges for the above mentioned functions, 1 and 
e'wt; indeed, it converges for all bounded functions. Moreover, the integral (7) 
converges for all functions that do not grow more strongly than eat (a > 0), pro
vided we use x > a.6 

Recalling the first modification, that is I (t) == 0 for t < 0, we obtain, with the 
modified spectral function, and (5)7 

(8) _1_ f eity Fx(Y) dy = 
+co { 0 for t < 0 

2n_co e-st I(t) fort> O. 

Fonnulae (7) and (8) can be rewritten as follows: 

co 
(9) the spectral function of e-xt I (t): F x (y) = f e-(sHy)C I (t) dt , 

o 

+co { 0 for t < 0 
(10) the time function I(t): -l-fe(XHfI)tFx(y)dy = 

2n -co I(t) for t> O. 

Quite naturally, a complex variable (x + iy) appears in formulae (9) and (10); 
hence it becomes apparent that the function F x (y) does not depend separately 
upon x, and y, but simultaneously upon x + iy, and we may write F(x + iy) 
instead of Fx(Y). The spectral functions corresponding to the range of values of 
the parameter x are associated in a manner that permits simultaneous representa
tion by one function of a complex variable: x + iy. Usually, we represent the com-

• For the integral (6) with the lower limit - 00, the factor e-zt would aggravate the difficulties, since e-zt 

grows as t .. - 00. 

7 For t = 0, we obtain the average of 1(0-) = 0 and 1(0+), that is, 1(0+)/2. 
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plex variable (x + iy) by the letter z; here it is customary to use the letter s which 
fits well to the time variable t, t and s being neighbours in the alphabet: 

s=x+iy. 

In (10), where x actually designates a fixed value, we have ds = dy/i, and cor
responding to the limits of integration y = - 00, and y = + 00, we obtain the 
new limits: s = x - i 00, and s = x + i 00. In the complex s-plane, the path of 
integration is the vertical line with constant abscissa x. Hence, we may rewrite 
formulae (9) and (10) as follows: 

0> 

(11) I e-stf(t)dt=F(s), 
o 

(12) 
1 -"+;0> j 0 . I etBF(s) ds = 

2 n ~ :'-;0> I (t) 

for t < 0 

for t> o. 

Integral (11) is precisely the Laplace integral (1) which produces, for the given 
function f(t), the function F(s). Conversely, the integral (12) reproduces f(t), 
using F(s). For this reason, one could call (12) the inverse of (11). 

We may now summarize the physical implications of formulae (11) and (12). 
For the function F(s), produced by means of the Laplace integral, consider the inde
pendent variable as complex valued: s = x + iy. With this, F(x + iy) is the spectral 
function of the dampened function e-xtf(t), having y as frequency variable. The time 
function f(t) can be reconstructed using formula (12), and F(x + iy). 

Instead of the above physical considerations, one may follow strictly mathe
matical arguments. Attempting a generalization of the power series 

one can ·firstly replace the integer-valued sequence of exponents n by some arbi
trary, increasing sequence of non-negative numbers A.n . In general, the correspond
ing functions zAn are not single-valued. The substitution z = e-8 produces the 
terms e-An8, which are single-valued functions. In this manner, one generates the 
Dirichlet series: <X> 

Lan e- An8 • 
n=O 

It is common practice to designate the variable of the Dirichlet series by s. One 
further step is necessary far the intended generalization: we replace the discrete 
sequence A.n by a continuous variable t, the sequence an by a function f (t), and 
summation by integration. This leads to the Laplace integral 

'" I f (t) e-t8 dt . 
o 

Substituting at the onset of the above generalization for the power series a 
Laurent series +", L anzn, 

n=-co 
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one obtains through the same process of generalization the two-sided Laplace inte
gral, which also serves as an important mathematical tool: 

+cc 

I I (t) e-ts dt . 

00 

The power series L an zn converges on a circular disc. Replacing the Integers 
,,=0 

n by the generally real-valued An, we have to consider the multi-valued behaviour 
of zAn. Accordingly, the circular disc of convergence is to be envisaged as a portion 
of a multi-layered Riemann surface. The transformation z = e- S maps the in
finitely many layers of this disc of convergence into a right half-plane of the s-plane. 
Indeed, a Dirichlet series converges in a right hall-plane; the same property will be 
established for the Laplace integral. 

On the circle z = eei~ of fixed radius e, we have: 

"=-00 n=-co 

that is, on the circle, the Laurent series is a Fourier series of type (3). As an analogy, 
we find that on the vertical line s = x + iy, with constant abscissa x: 

+'" +co 
I e-st I (t) dt = I e- iyt [e- xt I (t)] dt. 

-co 

That is: on the vertical line, the two-sided Laplace integral is a Fourier integral (6). 
For power series, and the one-sided Laplace integral, the respective dummy 
variable of summation of the Fourier series, and of the Fourier integral, scans be
tween 0 and + 00. The study of Fourier series provides valuable information for the 
theory of power series, with particular regard to the behaviour of the power series 
on the boundary of the circular disc of convergence. Similarly, the Fourier integral 
is an important tool in the study of the Laplace integral. 

Having thus introduced the Laplace integral as a natural generalization of the 
power series, we ought to suspect that known properties of the power series may 
pertain to the Laplace integral. That they do is, indeed, true to some extent. 
However, in some respects the Laplace integral behaves differently, and it consist
ently exhibits properties more complicated than those of the power series. 
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Laplace integrals of several, selected functions are evaluated in this Chapter, to 
develop a more intimate understanding of the Laplace integral. 

When evaluating a Laplace integral of some function I(t), we actually use I(t) 
only for 0 ~ t < + 00, hence it should be irrelevant, from the mathematical point 
of view, if and how I (t) is defined for t < O. However, some properties of the Laplace 
integral, particularly those which reflect a kinship to the Fourier integral, can be 
better understood if I (t) is assigned the value zero for - 00 < t < o. 

where u (t) is defined as 
1. I (t) == u (t), 

10 for t ~ ° 
2t (t) = 

1 for t> 0. 

The function u (t) is called the unit step lunction, sometimes in electrical engineering 
the Heaviside unit function. We find, firstly: .. 

f e-·t dt = ~ (1 - e-·/D) , 
o 

and with OJ -+ + 00, we obtain a limit if and only if Dis > 0; it is 

1 
F (s) = --; for ffi s > ° . 

Using the explanation of Chapter 1, p. 4, we recognize F(s) = F(x + iy) 
= (x + iy)-l as the spectral function of e-xtu(t). Writing s = yeh , we obtain 

F(s) = y-l e-i'P. 

The particular complex oscillation of e-xtu(t) of frequency y, has the amplitude y-l 

and the initial phase angle - ([!. That means that for growing Iyl, the amplitude 
tends towards zero, and I([!I tends towards :rc/2. The Laplace integral does not con
verge for x = Dis = 0; that is, u(t) does not have a spectral function. This also 
follows from the observation that with x = 0, for y = 0, that is for s = 0, F (s) is 
meaningless. 

2. t (~ ~ u (t - a) ~ I: for t ~ a 
(a> 0), 

for t > a 

the unit step function shifted to the right from t = 0 to t = a. 

F(s) = fe-at dt = e~aB for ffi_s> 0. 
a 

3. I(t) == eat (a arbitrary, complex). 
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'" 
F (s) = f e-(8-a) t dt = _1 - for 9'ts > ffi a . 

s-a 
o 

4. I(t) == coshkt ==(1/2)[ekt + e-kt] (k arbitrary, complex). 

Using 

f e-8t [fl(t) + /2(t)]dt= fe-at Il(t)dt+ fe-st 12(t)dt 
o 0 0 

and the conclusions of example 3, one finds: 

1( 1 1) 5 
F(s) = "2 s-k + s+k = s2-k2 , 

whereby we have to simultaneously restrict ffis > ffik, and ffis > - Dtk; shortly 
ffis> Iffikl. For real k, this means ffis > Ikl. 

5. I(t) == sinhkt ==(lI2)[ekt - e-kt] (k arbitrary, complex). 

1 ( 1 1) k 
F(s) = "2 s-k - s+k = s2-k2 for ffi s > 1 ffi k 1 . 

6. I(t) "=' coskt ==(l/2)[eikt + e- ikt] (k arbitrary, complex). 

1( 1 1) 5 
F(s) ="2 s-ik + s+ik = s2+k2 , 

whereby we have to simultaneously restrict ffis> ffi(ik) = - ';;5k, and ffis > 
- ffi(ik) = ';;5k; shortly ffis > l';;5k I. For real k, this means ffis > 0. 

7. I(t) == sinkt == (1/2i) [eUt - e-Ut] (k arbitrary, complex). 

for ffi s > 1 ~ k I. 

8. I(t) == ta (real a> - 1). 

The function ta is multi-valued for non-int~ger a. Therefore, we specify for ta the 
main branch; that is, for positive t., ta is positive. Performing the integration in 
two sections, (0,1) and (1, + (0), we require for the existence of the first integral: 
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1 

f e-" t G dt 
o 

9 

that a > - 1. With this restriction, the first integral converges for all values of s. 
The second integral: 

converges for a ~ 0 if and only if ffis > 0; if - 1 < a < 0, then the second inte
gral converges for s = iy", 0 also. For we have, with s =iy: 

ex) ex) ex) 

f e-· t t G dt = f e- iyt t G dt = f (cos Y t - i sin y t) to dt. 
1 1 1 

Considering the integral 
cu 

f ta sin y t dt , 
1 

and letting the upper limit approach + 00, not in a continuous manner, but in dis
crete steps through the zeroes nn/y of sin yt, we obtain the partial sums of an in
finite series. The general term of this series: 

( .. +l)"/r 

f t G sin y t dt 

""/ll 

has the following properties : the terms have alternating sign, and tend monotoni
cally, in absolute value, to zero (compare Fig. 1) . Hence the convergence of the 
sequence of partial sums is guaranteed by Leibniz' criterion. 

Ii sin yt (-/<a<OJ 

Figure 1 
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From this we can conclude that the integral with a continuously growing upper 
limit converges also. This last conclusion follows from the fact that for any co be
tween nn/y and (n + 1)n/y: 

co 811/Y (8+1) 1I/Y 

f - f ~ f 
1 811/Y 

and for co ~ 00, that is for n ~ 00, the right hand side tends towards zero. This 
last step in the above proof is by no means superfluous, for it may very well happen 
that some integral converges for a discretely growing upper limit, yet it diverges 
for the continuously growing upper limit. For instance, the limit 

2_ 

lim f sint dt (n = 1,2,' .. ) 
fI.-+CO 0 

exists and is zero, since 

while the integral 

2 (8+1)11 

f sintdt=O; 
2811 

co 

f sin t dt 
o 

does not converge for continuously growing upper limit; instead, it oscillates be
tween 0 and 2. 

Extensive details have been supplied with the above proof, for in the sequel 
we shall, on several occasions, demonstrate convergence of some integral by com
parison with a sequence; we can then refer to the details of the above proof. 

The above conclusions regarding the sin-integral apply similarly to the cos
integral, and we conclude: The Laplace integral of ta converges for a ;;;: 0, 
provided ffis > 0; it also converges for - 1 < a < 0, provided ffis ~ 0, except
ing s = O. Next, we need to evaluate the integral. For positive, real s, we substi
tute st = T: 

fa> -at t" dt __ 1 fa> -'r "d _ r (a + 1) 
e - s~ e T T - s"+1 . 

o 0 

This expression is inherently positive, hence we must use the main branch for 
sa+l. For complex s and ffis > 0, T too is complex, and the path of integration, 
o ~ t < + 00, is shifted into the ray from the origin through the point s towards 
00; that is, a ray in the right half-plane. This integral too is a well known represen
tation of the r-function. For - 1 < a < 0, the ray may coincide with the positive 
or the negative imaginary axis. 

The experiences with these examples demonstrate the need for a ,,!,ell-defined 
concept of integration. This book is designed so that the reader who is familiar 
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with Riemann integration only, can follow the development (except Chapter 30). 
Presuming a knowledge of Lebesgue integration, the statements remain essentially 
unchanged, although sometimes the expressions and the proofs could be simpli
fied. Remarks regarding such modifications will be included for the benefit of those 
who are familiar with Lebesgue theory. 

With regard to the upper limit, the Laplace integral is to be understood as an 
improper one; that is, we define1 : 

'" 01 

(1) f e-Bt I(t) dt = lim f e-Bt I(t) dt. 
o Q1_ CO o 

We call a Laplace integral absolutely convergent, provided 

01 

(2) lim f /e-'tl(t)/dt 
Q)~ CD 0 

exists. Clearly, absolute convergence of a Laplace integral implies convergence 
in the sense of (1). 

Obviously, we must require that the integral 

01 

f e-,t I (t) dt 

° 
exists for all finite OJ. However, the last example, I(t) == ta for - 1 < a < 0, 
shows that when using Riemann integration, it would be impractical to require 
I(t) to be properly integrable in every finite interval and, consequently, bounded. 
In this. example, I (t) is, at t = 0, improperly integrable only; that is, 

... 
lim f I(t)dt 
a_oa 

exists. Moreover, it is not sufficient to restrict our investigations to functions which 
require improper integration at t = 0 only, for we want to include in our studies 
functions which require improper integration at several points, such as 

forO<t<1 

for t;;;; 1, 

00 

1 This is important in case the integral is interpreted as a Lebesgue integral. In the Lebesgue theory J 
o 

can exist directly; that is, without resorting to the limiting process'" -+ 00. In this case, the integral is 
00 w 

eo ipso absolutely convergent. The interpretation of J as lim J is a generalization of the conventional 
. 0 (0+000 

Lebesgue integral. This generalization is explicitly admitted. 
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which necessitates improper integration at both t = 0 and t = 1. Functions of 
this type will be needed, for instance, in the theory of Bessel functions. We shall 
find that some theorems can be verified only under the stronger hypothesis that 
I (t) is absolutely improperly integrable at those exceptional points. This means: 
suppose the interval (a, b) contains exactly one exceptional point to with a neigh
bourhood in which I (t) is unbounded; we require that I (t) and, consequently, also 
II (t) I be properly integrable in every pair of subintervals (a, to - e:l), (to + e:2, b), 
with arbitrarily small e:l > 0, and e:2 > O. Then 

~-~ b 

lim f I I(t) I dt + lim f I I(t) I dt 
'1-0 .. 8._0 t.+ .. 

should exist. For to = a, we need consider only the second integral, and for to = b, 
the first one only. 

That is, in terms of Riemann integration, we require I (t) to be properly inte
grable in every finite interval after, at most, a finite number of exceptional points 
with small neighbourhoods have been removed, and to be absolutely improperly 
integrable at those exceptional points. We state this briefly: The lunction I(t) be 
absolutely integrable in every finite interval 0 ~ t ~ T.2 In the sequel, this 
prerequisite is tacitly assumed for every Laplace integral. 

The factor r st is bounded in every finite interval; hence, r 8t l(t) too is abso
lutely integrable in every finite interval. 

Observe that a function which is improperly integrable at a finite point, need 
not be absolutely integrable, and, consequently, need not be Lebesgue integrable. 
We demonstrate this with the following example: 

The integral 

1 . 1 f slUT 
o -,-dt. 

1 . 1 

fSln'dt 
• t 

converges for e: -+ O. This is shown by means of the substitution t = 11u, which 
transforms the integral into 

1/. 

f sinu du 
u ' 

1 

and for lIe: growing discretely through the values nn (n = 1, 2, 3, ... ), we obtain 
the partial sums of an alternating series, the terms of which tend monotonically 
towards zero (compare p.10). However, the limit of 

2 One says, briefly: I(t) is locally absolutely integrable. For the reader who is familiar with the Lebesgue 
theory, this means: I(t) is Lebesgue integrable in every finite interval, and therefore eo ipso absolutely 
Lebesgue integrable. 
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1 . 1 J SInT 
t 

1/_ 

dt = J I Si: u I du 
1 

for liE -+ 00 does not exist, since 
("+1),, 

J I Si:U I du 

" " 
is of the order of 1/2n; hence, for n ~ 00 

" " J I Si:U I du 
o 

behaves like the partial sum of the diverging series 

1 ( 1 1 ) - 1+-+-+··· . 2 2 3 

The theorems for Laplace integrals proved in this text, need not apply to func
tions like: 

1 . 1 -sm- . 
t t 

Remark: For all functions presented in this Chapter, the Laplace integral con
verges for some specified value of s. There are, of course, functions such that their 
Laplace integral would not converge for any value of s; for instance, f (t) = et2 • 

In the above examples, the convergence of the Laplace integrals for some value 
of s follows from the fact that each of the example functions is dominated by some 
ept (P > 0). This is, by no means, a prerequisite for convergence; a fact that is de
monstrated by the example function on p. 18 which grows far more strongly 
than ept• 

3. The Half-Plane of Convergence 

Reviewing the examples of Chapter 2, we observe that for each of these functions 
the Laplace integral converges in a right half-plane. We shall show in..this Chapter 
that this is generally true for Laplace integrals. Prior to that, we shall determine 
the domain of absolute convergence of a Laplace integral. For this, we shall need 

Theorem 3.1. A Laplace integral which converges absolutely at some point so, con
verges absolutely in the closed right half-plane: ffis > ffiso. 
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Proof: We utilize Cauchy's criterion of convergence: An integral 

00 

S cp (t) dt 
o 

converges if and only if for every e > 0, there is an w, such that 

<U, 

I rp (t) dt < 6 for all W2> WI> W . 

"'1 

For ffis ~ ffiso, we find: 

~ ~ ~ I I e-81 f (t) I dt = I I e-(8-8.)t e-8•1 I (t) I dt = I e-lR (3-I.)t I e-8,t I (t) I dt 

W. 

~ I I e-8•t I (t) I dt . 

By hypothesis, the integral 
co 

I I e- 8• t f(t) I dt 
o 

converges; hence, for every e > 0, there is an w, such that 

W, 

I I e- 8,t f (t) I dt < 6 for all W 2 > WI> W. 

"'1 
It follows that 

w, 

I I e- st f (t) I dt < 6 for all W2> WI> W . 

As an immediate consequence of Theorem 3.1, we derive 

Theorem 3.2. II the integral 
co I e-8t I(t) dt = F(s) 

o 

converges absolutely at so, then F (s) is bounded in the right hall-plane: ffis ;;;; ffiso. 
Prool: For ffis ~ ffiso, one finds that 

IF (s)1 = \ {e- 81 f (t) dt \ ~ {e- lRSd I I (t) I dt ~ {e-ms,.tl I (t) I dt = II e--,t I (t) Idt. 
o 0 0 0 

By means of Theorem 3.1, we determine the domain of absolute convergence 
of a Laplace integral. 
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Theorem 3.3. The exact domain 01 absolute convergence 01 a Laplace integral is 
either an open right hall-plane: ffis > IX, or else a closed right hall-plane: ffis ~ IX; 

admitting the possibilities that IX = ± 00. 

Prool: For real s, three cases need be considered: 
1. The integral converges absolutely for every real s; then, by Theorem 3.1, it 

converges for every complex s, and Theorem 3.3 is satisfied with IX = - 00. 

2. The integral converges absolutely for no real s; then, by Theorem 3.1, it con
verges absolutely for no complex s, and Theorem 3.3 is satisfied with IX = + 00. 

3. There is a real s where the integral converges absolutely, and a real s where 
the integral diverges absolutely. Let Kl be the class of the real SI where the inte
gral diverges absolutely, and let K2 be the class of the real S2 where the integral 
converges absolutely. This separation into classes implies a Dedekind cut: every 
real number belongs to precisely one of the two classes; the classes are non-empty; 
every real number SI of class K1 is smaller than every real number S2 of class K2; 

for suppose there is an S1 of K1 which is larger than some S2 of K2 (equality is ex
cluded by the definitions of Kl and K 2), then, by Theorem 3.1, S1 is a point of ab
solute convergence, contradicting the definition of K1. 

The Dedekind cut defines one finite, real number IX. We now claim that for every 
complex s with ffis < IX, the integral diverges absolutely. ffis < IX implies the 
existence of an S1 in K 1, so that ffis < SI < IX. Absolute convergence at s would 
imply absolute convergence at Sl, by Theorem 3.1. Also, for every s with ffis >IX, 

the integral converges absolutely. Indeed, ffis > IX implies the existence of an S2 

in K 2, so that IX < S2 < ffis; absolute convergence at S2, together with Theorem 
3.1, guarantees absolute convergence at s (compare Fig. 2). 

s 
9 
I 
I 

- ---- - K, 

5, 

s 
y 

~s 

-----~---- ~ ----

/ 

Figure 2 

The straight line ffis = IX belongs either not at all, or else entirely, to the domain 
of absolute convergence, for Theorem 3.1 states that absolute convergence at one 
point of this line implies absolute convergence at every point of this line. Indeed, 
either possibility can be observed: for I(t) == 1/(1 + t2), we find IX = 0, and the 
Laplace integral converges absolutely for all s with ffis = 0; for I (t) == 1, we find 
IX = 0, and the integral diverges absolutely for all s with ffis = 0. 

The number IX is called the abscissa 01 absolute convergence of the Laplace inte
gral; the open half-plane ffis > IX, or the closed. half-plane ffis ~ IX, is referred to 
as the hall-plane 01 absolute convergence of the Laplace integral. 
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The next Theorem is so important that it deserves the designation "Funda
mental Theorem". It will be used to determine the domain of simple convergence l 

of a Laplace integral. 

Theorem 3.4 (Fundamental Theorem). If the Laplace integral 

j e-8t f(t) dt 
o 

converges for s = so, then it converges in the open half-plane ~s > ~so, where it can 
be expressed by the absolutely converging integral 

wt'th 

co 

(s - so) f e-<·-··)I cp(t) dt 
o 

t 

cp(t) = f e-·· T /('r) dT. 
o 

Supplementary Remark: The same conclusion is valid for a Laplace integral which 
does not converge at So (that is, the limit of cp (t) as t -+ 00 does not exist), provided cp (t) 
is bounded: /cp(t)/ ~ M, for t ~ O. 

Proof: Using integration by parts,2 together with cp (0) = 0, one finds: 

w w 

(1) f e-stf(t)dt= f e-(8-8·)te- 8• t f(t)dt= 
o 0 

w 

= e-(B-B.)W cp (w) + (s - so) f e-(s- •• )t cp (/) dt. 
o 

If the Laplace integral converges at so, then cp (t) has a limit F 0 for t -+ 00. Moreover, 
the integral cp(t) is continuous for t ~ O. Hence cp(t) is bounded: /cp(t)/ ~ M for 
t ~ 0.3 Consequently, for ~s > ~so the limits 

lim e-(s-S,)w cp(w) = 0 

1 An integral that converges, but does not converge absolutely, is called conditionally converging. We 
call a converging integral simply converging if the question regarding absolute or conditional conver
gence is avoided. 

2 Here, and often in the sequel, we use the "generalized" integration by parts: If 

t t 
V(I} = A + f U(T} dT, V(I} = B + f V(T} dT, 

a a 

b Ib b f V(t} v(l}dl = V(I} V(I} a - f U(I} V(I} dl. 
a a 

then 

We require neither u = V' nor v = V'. 

3 For sufficiently large t > T, 'I'(t) differs butllttle from the limit Fo; hence, 'I'(t) is bounded. In the finite 
interval 0 ;::;; I;::;; T, 'I'(t) is continuous and, consequently, bounded. Thus, 'I'(t) is bounded for t ~ O. 
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and w co 

lim f e-(8-3.)t 91(t) dt = f e-(B-B.)t 91(t) dt 
W_CO O 0 

exist. The integral converges absolutely, since 
co co f I e-(s-s.)1 91(t) I dt ~ M f e-lR(s-s.JI dt. 
o 0 

From (1), we find for w -+ 00: 

j e-3t I(t) dt = (s - so) I e-(B-B.)t 91(t) dt for ffis> ffiso· 
o 0 

Observe that in the proof we actually used no more than 191(t)/ ~ M. 
For many proofs, valuable aid is derived from the possibility that any (possibly 

only conditionally converging) Laplace integral can be expressed by an absolutely 
converging integral. 

Using Theorem 3.4, we derive, in a manner similar to the one employed in the 
verification of Theorem 3.3: 

Theorem 3.5. The exact domain 01 simple convergence 01 a Laplace integral is a 
right hall-plane: ffis > {3, possibly including none 01. or part 01, or all 01 the line 
ffis = {3; admitting the possibilities that {3 = ± 00. 

For the function I(t) =' 1/(1 + t2), we find {3 = 0, and the entire line ffis = {3 
belongs to the domain of simple convergence. For the function I(t) =' 1/(1 + t), 
we find {3 = 0, and the integral diverges for s = o. However, it converges for 
s = iy (y of: 0), since 

co co co 

f -lye _1_ dt = f cosyt dt"- ·f sinyt dt 
e 1+t 1+t Z 1+t ' 

o 0 • 0 

and either integral converges for y of: 0 (compare p. 9). For the function I(t) =' 1. 
we find {3 = 0, and no point of the line ffis = 0 belongs to the domain of simple 
convergence. 

We call the number {3 the abscissa 01 convergence of the Laplace integral; the 
open half-plane ffis > {3 is referred to as hall-plane 01 convergence of the Laplace 
integral; the line ffis = {3 is called the line ot convergence. 

Obviously, it suffices to investigate real numbers in the search for the numbers 
IX and {3. 

In Chapter 1, we developed the Laplace integral as a continuous analogue of 
the power series. The domain of convergence of a power series is a circular disc, 
possibly including points of the boundary. In the interior of the disc, the power 

co 
series converges absolutely. When written in the form L ane-·n , the power series 

0=0 

converges in a" right half-plane; in the interior of this half-plane it converges abso
lutely. That is, for a power series, the domain of simple convergence and the 
domain of absolute convergence coincide, with the possible exception of points on 
the boundary. This is not generally true for the Laplace integral. In support of 
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this statement, we present an example of a Laplace integral which converges every
where, yet nowhere absolutely. Define the function 1 (t)4 as follows: 5 

for 0 ~ t < log log 3 = a I 0 

I(t) = 1 
(-It exp h- et) for log log n ~ t < log log (n + 1) (n = 3, 4, ... ) . 

This integral diverges absolutely for all s, since 

J I e-st I(t) I dt = J exr(- 9\s· t + ~ et) dt 
a a 

and, however large ffis may be selected, et/2 ultimately grows more strongly than 
ffis . t. 
To establish simple convergence, it is sufficient to consider real s. We investigate 
1 (t) in an interval of constant sign, and form the integral: 

log log (,,+1) ,,+1 

f ( 1 t) f (logx)-S-1 
In = exp - s t + "2 e dt = :t:l/~ dx, 

loglog" " 

using the substitution et = logx to produce the right integral. For each positive 
or negative s, beyond a certain point, the integrand decreases monotonically to O. 
Hence, from a certain n onwards; we have: In+! < In, and In ~ 0 as n ~ 00. 

Letting, for the integral ro 

(2) f ~st I(t) dt, 
o 

the upper limit of integration approach + 00, not in a continuous manner, but 
in discrete steps, through the values of log log n, for n = 3, 4, 5, ... , we generate 
the series: 

whose convergence is guaranteed by Leibniz' criterion for alternating series. 
Using arguments similar to those on p. 10, we conclude that (2) also converges for 
the continuously increasing upper limit of integration. 

Hence, we actually encounter IX '*' fl, in which case, necessarily, fl < IX, since 
absolute convergence implies convergence. For this case we have a band 01 condi
tional convergence fl < ffis < IX. 

4 In the second line, we need log logn ~ 0, which necessitates n ~ e = 2.71 .... It is for this reason that 
t (t) is defined separately between 0 and log log 3. 

5 The form exp (x) is used instead of eX, whenever the latter representation creates typographical diffi
culties. 
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4. The Laplace Integral as a Transformation 

The Laplace integral of some function converges in a right half-plane, provided 
that it converges at some point. In this case, a function F (s) is defined by the 
Laplace integral: ex> 

(1) J e-Bt /(t) dt =< F(s). 
o 

One may say that a correspondence is established between / (t) and F (s) by means 
of the Laplace integral. This correspondence may be interpreted as a transforma
tion which transforms the function /(t) into the function F(s). In this sense, we 
call the correspondence the Laplace transformation, which is expressed by the 
symbol ~: 

(2) £{/(t)} = F(s). 

That is, the transformation ~, when acting upon the function /(t), produces the 
function F(s), the Laplace transform o//(t). For brevity, we shall write ~-transfor
mation instead of Laplace transformation. 

The representation (2) should be interpreted like the notation of a function, 
!p(x) = y, which indicates: with the argument x we relate the value y by means 
of the function !p. 

Using modern terminology, ~ may be called an operator that produces the func
tion F(s) when acting upon the function /(t). This operator ~ has the following 
properties : 
it is "additive" (or "distributive"): 

and "homogeneous": 
.e {a/} = a .e { /} (IX an arbitrary constant) ; 

hence, it is "linear": 
.e {al/1 + a2/2} = al £ {/1} + a2 £ {/2} (lXI, IX2 arbitrary constants). 

The operation indicated by ~ is integration, hence ~ is classified as an integral 
operator, and we call the ~-transformation an integral trans/ormation. 

A correspondence may be interpreted as a mapping. Envisage the correspond
ence, or transformation, performed by some apparatus like a photographic camera 
which produces an image of the original. From this interpretation originates the 
terminology: originalfunction for I(t), and image function for F(s). 

In modern mathematics, a suggestive approach results from considering the 
totality of specific objects as a set of points in some abstract space. In an abstract 
space, one may conveniently visualize logical relations by means of concepts 
borrowed from geometry. In this sense, one defines as the original (function) space 
the totality of all functions /(t) for which the Laplaceintegral converges at some 
point, and which, therefore, may be encountered as original functions. Similarly, 
one-,defines as the image (function) space, the'totality of all functions that may 
occur as image, functions of the ~-transformation. 
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In the sequel, lower case letters will be reserved to denote original functions, 
and the corresponding upper case letters will be used to represent the respective 
image functions; for instance, t and F, 'P and f!>. Exceptions to this practical con
vention have to be made for those symbols which are already specified by prior 
usage, like r(t}. The chosen notation conveniently simplifies the presentation of 
the theory. In applications, one must occasionally yield to established practices. 

Sometimes, one wants to indicate the point s, at which the ~-transform is to be 
evaluated. This can be accomplished by either of the following notations: 

.2 {t; s} or .2{t}s . 

The relation (2) may be expressed more compactly by the symbol of correspond
ence cr., which is defined by 

t (t) 0-4 F (s) or equivalently F (s}.-<> /(t) , 

read: "t(t) is correlated with F(s}", or "t(t} corresponds to F(s}". 
In all those problems where actual evaluation of the integral (I) is not at

tempted, the reader is advised to de-emphasize the explicit definition of the ~-trans
formation by an integral, and to use the operator ~ or the symbol of correspond
ence: cr •. In applications, we will primarily be concerned with the properties of 
the ~-transformation represented by these symbols, disregarding the integral by 
which this transformation is defined. For, in a similar manner, when working with 
integrals, one usually thinks of rules and properties rather than of the definition 
of the integral as the limit of a sum. 

5. The Unique Inverse of the Laplace Transformation 

In the previous Chapters, we have consistently considered the ~-transformatlOn 
as the correspondence which relates with each original fUhction its corresponding 
image function, obviously in a unique manner. This relation may be looked at in the 
inverse orientation; that is, one may begin with some specific image function and 
seek the corresponding original functions. This inverse transformation will be 
designated as ~-Ltransformation. Clearly, this inverse transformation cannot be 
unique, for two original functions that differ at a finite number of points, never
theless have the same image function. Indeed, this conclusion may be carried even 
further. For this purpose, we introduce the nullfunction n (t), which is character
ized by the property that its definite integral vanishes identically for all upper 
limits:1 # 

(1) f n(T}dT=O forallt~O, 
o 

1 When using Lebesgue integration, a function satisfies the con!iition (1) of the nullfunction if and only 



5. The Unique Inverse of the Laplace Transformation 21 

For such a nullfunction one concludes, using integration by parts: 
fD I. fD fD , 

I e-Btn(t) dt = e-. t I n(T) dT I + s I e- Bt dt I n(T) dT = 0, 
o 0 0 0 0 

hence 
'" 

lim I e-·tn(t)dt = £(n) = O. 
(0-+(1)0 

With this, we have demonstrated that any nullfunction may be added to an original 
function without affecting the corresponding image function; hence, the inverse 
transformation cannot be single-valued. Fortunately, with the above observation 
we have accounted for all possibilities, for we can state the 

Theorem 5.1 (Uniqueness Theorem). Two original functions, whose image func
tions are identical (in a right half-plane), differ at most by a nuUfunction. 

In the Lebesgue theory it is customary to consider two functions as being equiv
alent, provided they differ only by a nullfunction. In this sense, the ~-l-trans
formation is unique. 

Clearly, Theorem 5.1 is equivalent to the statement: If ~{t} = F(s) 50 0; then 
f (t) is a nullfunction. It is interesting that the same conclusion may be reached 
from the weaker hypothesis: ~{f} = F(s) assumes the value zero on a sequence of 
points that are located at equal intervals along a line parallel to the real axis. To 
establish this more powerful statement, we shall need 

Theorem 5.2. Let "P(x) be a continuous function, and suppose that the moments 
of every order of "P (x) on the finite interval (a, b) vanish, that is: 

b 

I x'" "P(x) dx = 0 fur /t = 0, 1, ... ; 
II 

then: "P(x) 50 0 in (a, b). 

Proof: Without loss of generality, we may restrict "P(x) to be real-valued. For a 
complex-valued "P(x), the conclusion may then be applied separately to show the 
simultaneous vanishing of the real part and the imaginary part. The Weierstrass 
approximation theorem guarantees, for every ~ > 0, the existence of a polynomial 
Pa (x) such that in the finite interval (a, b) the continuous function "P(x) differs from 
P6 (x) by at most~, hence 

"P(x) = P6(X) + ~ 1J(x) with 11J(x) I ~ 1 for a ~ x ~ b . 

if the function assumes the value zero almost everywhere, that is everywhere except on a set of measure 
zero. Clearly, for any nullfunction n(t), r.1n(t) is also a nullfunction, and l!{n} = O. 
The criterion (1) for a nullfunction was chosen since it is also applicable to Riemann integration, while a 
function which is zero almost everywhere need not be Riemann integrable; a fact which is demonstrated 
by the example: nIt) == 1 for rational t, and nIt) == 0 for irrational t. 



22 5. The Unique Inverse of the Laplace Transformation 

Multiplying this equation by 1J! (x), and then integrating between a and b, yields 

b b b 

f 1J!2(X) dx = f p~(x) 1J!(x) dx + fJ f D(x) 1J!(x) dx. 
~ a a 

The first integral of the right hand side is a linear combination of moments of 1J! (x) 
on (a, b); it is zero by hypothesis. The remainder of the equation indicates: 

b b 

f 1J!2(X) dx ~ fJ f 11J!(x) I dx. 
a a 

Let us suppose that 1J!(x) is not identically zero in (a, b). Then there exists a point, 
and by continuity of 1J! (x) an entire neighbourhood of this point, where 11J! (x) I > O. 
Whence b b 

S 1J!2 (x) dx > 0 ,and S 11J! (x) I dx > 0, 
a a 

and we may divide by the latter non-zero number, to find 

b b 

fJ ;;:; f 1J!2(X) dx : f 11J!(x) I dx > 0 , 
a a 

thus producing a contradiction, since !5 may be selected to be arbitrarily small. 
Hence 1J! (x) == 0 in (a, b). 

This Theorem 5.2 is used in the verification of 

Theorem 5.3. If ~{f} = F(s) vanishes on an infinite sequence of points that are 
located at equal intervals along a line parallel to the real axis: 

(2) F(so+nO')=O (0'>O,n=1,2,"') 

So being a point of convergence of ~{f}; then it follows that f (t) is a nullfunction. 
Remark: Observe the interesting implication of Theorem 5.3: An image func

tion which vanishes on a sequence of equidistant points along a line parallel to the 
real axis, vanishes identically. 

Proof of Theorem 5.3: Invoking the Fundamental Theorem 3.4, for ffis > ffiso, 
we find 

with 

hence, 

'" 
F (s) = (s - so) f e-(s-so)t qJ (t) dt 

o 

t 

.p (t) = f e-·" f (T) dT ; 
o 

'" 
F(so + nO') = nO' f e-natqJ(t) dt. 

o 
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By hypothesis (2): 

'" 
fe-nat Ip(t) dt = 0 for'n = 1, 2"" 
o 

Employing the substitution 
e- at = x, t = _ logx 

q , ( log x ) Ip --q- = 1jI{X) , 

we rewrite the last equation: 

or 

1 

: f xn - 1 1jI{X) dx = 0 for n = 1, 2, ... 
o 

1 

f x'" 1jI{X) dx = 0 for p, = 0, 1, ... 
o 

To make 1jI(x) continuous in the interval 0 ~ x ~ 1,2 define: 

1jI(O) = lim Ip(t) =F(so.), 1jI(1) = Ip(O) = O. 
1-+ a:> 

Thus, we may apply Theorem 5.2, and we observe that 

(3) 
t 

1jI(x) :a 0, that is Ip(t) = f e- s." j(T) dT:a O. 
o 

Integration by parts produces: 

t I., 

e-·· t f l(T) dT + So fe-B • ., dT f j(u) du:a O. 
o 0 0 
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The integrand of the second integral is continuous, hence we can differentiate this 
integral, and consequently also the first integral. Differentiation yields: 

I I t 

-soe- 8• t f !(T)dT+e-8• t ! f !(T)dT+soe-s.tf j(u)du:aO 
o 0 0 

or 
t 

! f !(T)dT==O. 
o 

2 The function f(t) need not be continuous; however, we do require a continuous function w(x) to satisfy 
the hypotheses of Theorem 5.2. It is for this reason that we did not5tart directly with 

F(so + na) = jrflat [r 8• t j(t)]dt = 0 
o 

in the above proof, but instead, followed the detour involving 'I'(t). 
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t 

With f 1(7:)d7: = 0 for t = 0, it follows that 
o 

t 

f 1(7:) dp= 0, 
o 

that is, I (t) is a nullfunction. 3 

A non-trivial image function F (s) = ~{/} may nevertheless have infinitely many 
zeros along a line parallel to the real axis, provided these are not spaced at equal 
intervals along this line. This is demonstrated by two examples: 

(4) £ {_1_ cos..!..} = ~ e-v'2S cos ffs , 
y-;t t Ys 

(5) £ {_1_ sin..!..} = _1_ e--v'27 sin ffs. 
y-;t t Vs 

With the aid of Theorem 5.3, we strengthen Theorem 5.1, and obtain 

Theorem 5.4 (Strengthened Uniqueness Theorem). Two original lunctions, 
whose image functions assume equal values on an infinite sequence 01 points that are 
located at equal intervals along a line parallel to the real axis, differ at most by a null
function. 

For applications, one often needs to establish exact equality of original func
tions. This may be accomplished with the aid of 

Theorem 5.5. Two original functions which differ by a nullfunction, are exactly 
equal at those points where both functions are either continuous from the lelt, or contin
uous Irom the right. 

Suppose hand f2 are continuous from the left at the point t, then n = h - 12 
is also continuous from the left at this point t. Hence, n (t) may be obtained by 

t 

differentation of f n (7:) d 7: '=' 0 from the left; this yields zero. 
o 

As a consequence of Theorem 5.3, we establish 

Theorem 5.6. A Laplace transform F (s) =1= 0 cannot be periodic. 

Proof: Suppose F (s) is periodic with complex period a; that is, in the right half
plane of convergence: 

F(s) = F(s + a) (a a complex constant), 
then 

J e- Bt I (t) dt - J e-(Ha)t I (t) dt = J e- Bt (1 - e- at) f (t) dt = 0 . 
o 0 0 

3 In the Lebesgue theory, (3) immediately implies that r.t/(t) is a nullfunction and, furthermore, that 
/ (t) is a nullfunction, since e-'o' =1= O. 



5. The Unique Inverse of the Laplace Transformation 25 

Hence (1 - e-f1t)/(t) is a nullfunction. The factor (1 - rat) has the zeros: for 
non-imaginary (I, there is exactly one zero at t = 0; for purely imaginary (I, there 
are zeros given by the real-valued sequence t = n2ni/(I with n = 0, 1, 2, 3, ... , 
In the Lebesgue theory one can immediately conclude that 1 (t) is a nullfunction. 
When using Riemann integration, one can establish the same conclusion, for we 
have 

or 

(6) 

hence, with 

t J (1 - rat) I(t) dt == 0, 
o 

t t 

f I(T) dT = fe-a .. I(T) dT for t;?; 0 • 
o 0 

t 

f I(T)dT=rp(t), 
o 

and using integration by parts: 

that is: 

(7) 

t t 

rp(t) = J e- ar I(T) dT = e-at rp(t) + (I f e-ar rp(T) dT, 
o 0 

, 
(l - e-al) !p (t) = (I f e-ar rp (T) dT . 

o 

The function rp (t) is continuous, hence the right hand side can be differentiated, 
consequently also the left hand side, and rp (t) also, with the possible exception of 
the zeros of (1 - e-a t), which we enumerated above. Differentiation of (7) produces: 

(I e-at rp (t) + (l - e-al) rp' (t) = (I e-at rp (t) i 

hence, 
rp'(t) = 0 

with the possible exception ot the zeroes of (1 - e-at). For the continuous func
tion rp(t) with rp(O) = 0, it follows thalrp (t) == O. Thus I(t) is a nullfunction, and 
F(s) == o. 

Theorem 5.6, when applied to the function e-a8 (~ arbitrary, complex) with 
period 2ni/~, shows that e-aB is not an image function. 
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6. The Laplace Transform as an Analytic Function 

On p. 5 we developed the Laplace integral as a continuous analogue of the power 
series. In this Chapter, we shall demonstrate that a Laplace integral, like a power 
series, always represents an analytic function. 

Theorem 6.1. A ~-transform is an analytic function in the interior of its half-plane 
of convergence, ffis > p, that is, it has derivatives of all orders. The derivatives are 
obtained by differentiation under the integral symbol: 

co 

F(n) (s) = (-l)n f e-st tn f(t) dt = (-l)n ~ {tn f(t)}. 
o 

The derivatives too are ~-transforms. 
Proof: It suffices to verify the Theorem for n = 1; the general conclusion 

follows by iteration. For an interior point of the half-plane of convergence s we 
must show that 

co 

(1) lim F(s + h~ - F(s) = _ f e-st t f(t) dt. 
h~O 0 

The analogous steps in the corresponding proof for the power series are easy, for 
the power series converges absolutely in the interior of the domain of convergence. 
However, this cannot be generally assumed for the ~-integral. Thus, we need resort 
to the Fundamental Theorem 3.4, and represent F (s) by the absolutely converging 
integral 

(2) 

with 

(3) 

Q) 

F (s) = (s - so) f e-(s-soll cp (t) dt (ffi s > ffi so) 
o 

t 

q:>(t) = f e-s,r f(-r)d-r, 
o 

where So is a point of convergence of ~{f}. We select this point So in the following 
manner: Since ffis > p, the abscissa of convergence, we can set ffis - p = 3~ > 0, 
and1 we specify: 

So = p + ~ , 
hence: 

(4) ffi(s - so) = 2 ~ > 0 . 

Formally differentiating (2) under the integral symbol, we find 

(5) 'l'(s) = I e-(s-s,)t q:>{t) dt - (s - so) I e-(s-s.lt t q:>(t) dt. 
o 0 

1 In case {J = - 00, replace {J in the proof by any real number to the left of s. 
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Now, we claim that 

li F(s + h} - F(s} _ lTI( ) m h -rS. 
11 .... 0 

For the verification, we a priori restrict 

(6) Ik 1< e 
and form, using the expression (2) for F(s) , 

D(k) = F(s + hl- F(s} - lJI(s) = 

- ~ { <, + h - 'J l,-(·H-.... 'P(I) <II - (, - '.) [,-(.-.... 'P(q it } 

m m 

- f e-(s-s.>1 q; (t) dt + (8 - so) J e-(S-S'>' t q; (t) dt 
o 0 
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m m -lit ) 
= f e-(s-s,)I (e- hI - 1) q; (t) dt + (s - so) f e-(s-s.)1 ( e h -1 + t q; (t) dt. 

o 0 

Exploiting the restriction (6), we can establish the following bound 

I e-III -11 = I-~+ (hI)· - (ht)' +···I:s I k I t(1 +.l!l!.+ IhlBt· + ... ) 
11 21 31 - 11 21 

= I kit elllll ;;; I kit eel, 

I e~Aht-1 I I ht· hIts hat' I ---+t = 21-31+41-+'" 

;;; IkltS (1+ I~~t + Ih~~tB + ... ) = Iklt2eIA1';;; IkltSee,. 

The function q;(t) is continuous for t ;;;:; 0, and lim q;(t) = F(so), hence 
1+ 00 

(7) Iq;(t) I :i M for t 5;; 0 . 

Because of (4), we obtain 

m m 

I D(k) I ;;; I kiM f e-2e, t eel dt + I s - So II kiM fe-let t2 eel dt 
o 0 

Consequently, D (k) -+ 0, for k -+ 0, which implies that F' (s) = lJI(s). 
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Now, we seek a simpler representation for l[I(s). Using integration by parts, 
and (3), we find: 

that is: 

(8) 

t t t t 

f T[e- B •• ftt")] dT = Hp(T) I -f tp(T} dT = ttp(t) - f tp(T) dT, 
o 0 0 0 

t 

t tp (t) = f [tp (T) + u-8.' f (T)] dT , 
o 

and, because of (8) , 

"'" 
- (s - so) f r (8-B.) t [t tp (t)] dt 

o 

I"'" "'" 
= e-(8-8.)tttp(t) - f e-(B-B.)t [tp(t} + tr8•t f(t)] dt 

o 0 

"'" 00 

(9) = - f e- (8-Ba)t tp (t) dt - f e- Bt t I (t) dt , 
o 0 

since for t -+ 00, e-(8-8o ) tttp (t) -+ 0, because of (4) and (7). Substitution of (9) into 
(5) yields for 1[1 (s) the expression (1). 

Remark: Theorem 6.1 could also be established by firstly verifying it for ~
integrals with finite upper limits T, and then invoking the limiting process: 
T -+ 00. For this purpose, one requires deeper theorems of both Lebesgue theory 
and theory of functions. In contrast, the above verification employs elementary 
means only. 

The finite ~-integral exists for every s. Thus, one may formulate the more 
specialized 

Theorem 6.2. A "finite" ~-translorm 

T 

F(s) = f e- Bt f(t) dt 
o 

is an entire function. 
Although the ~-transform does behave like a power series insofar as it repre

sents an analytic function, it does, nevertheless, differ essentially from a power 
series in several respects: 

1. Every function which is analytic on a circular disc can be expressed by a 
power series. However, not every function which is analytic in a right half-plane 
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can be represented by a ~-transform. This is demonstrated by the example e-aB 

(see p. 25). 
2. A power series converges exactly on the largest circular disc about the centre 

of the power series expansion, on which the represented function is analytic; that 
is, there is at least one singular point on the boundary of the circular disc of con
vergence. By contrast, on the line oj convergence oj a ~-transjorm, there need not be 
a singular point oj the junction. Indeed, the function may be analytic in a half
plane which extends beyond the haif-plane of convergence, possibly in the entire 
plane. This is demonstrated by the following example. Let j (t) be defined by 

j(t) = - net sin net = ;, (cos ne') . 

Using integration by parts twice, one obtains: 

'" f e-BI (-ne' sinne') dt 
o 

'" 
= 1 + e-S'" cos ne'" + ~ e-(S +1)", sin ne'" + s (s + 1) f e-(s + 1)' sin ne' dt • . n n 

o 

When considering the Ijmit for the right hand side as OJ ~ 00, we observe that the 
second term converges exactly for ffis > 0, and that all other terms certainly have 
limits for ffi(s + 1) > 0; hence ~{j} converges exactly for ffis > 0, and 

G m J e-st (- ne' sin ne~ dt = 1 - S(Sn~l) f e-(·H)' (- ne' sin ne~ dt, 
o 0 

which may be written as a functional equation: 

F(s) =1- S(S';1) F(s+2). 

With the aid of the latter, one can continue F (s), analytically and free of singulari
ties from the half-plane ffis > 0 into the half-plane ffis > - 2, from this half-plane 
into the half-plane ffis > - 4, and so forth; thus, F(s) is analytic in the entire 
plane. 

This example demonstrates that the half-plane of convergence of the ~-integral 
need not be the largest plane in which the ~-transform is an analytic function. For 
this reason, we define: 

Let X be the lower limit of the real x so that F (s) is analytic for ffis > x. Then 
we call X the holomorphy abscissa,2 and the half-plane ffis > X the holomorphy halj
plane for F (s) = ~{j}. We have X ~,8; cases with X < ,8 are actually encountered. 

a The term "holomorphic" is used occasionally instead of "analytic", particularly if the function is not 
considered as a whole, but locally. For instance, "F(s) is holomorphic at· so" means "F(s) is analytic in 
some neighbourhood of so". Thus, we can replace the rather ugly term analyticity by the term holo
morphy. 
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Theorem 6.1 is of extreme importance for the theory of the ~-transformation. 
The original function need be defined for real t only; it is largely unrestricted. 
The image function, however, belongs to the distinguished class of analytic func
tions, so that one can employ the powerful theory of complex functions in the 
study of image functions. 

7. The Mapping of a Linear Substitution of the Variable 

To explain the intentions which govern several of the subsequent Chapters let us 
employ an analogy. In Chapter 4 we compared the ~-transformation with some 
apparatus which maps two function spaces into each other. Alternatively, one 
could compare the process of this transformation with the translation between two 
languages. The latter establishes a correspondence between the words of two 
languages, while the ~-transformation relates the functions of two function spaces. 
The first requisite for a translation between languages is a collection of correspond
ences between individual words, that is, a dictionary. Similarly, for the ~-trans
formation we need a collection of correspondences between individual functions, 
a table of transforms. However, a dictionary is insufficient when attempting a 
translation between two languages. For instance, verbs are conjugated in the first 
language, and one must know how to perform the corresponding operation in the 
second language. Also, words are joined in the first language to form sentences, 
and the translator must know how to construct the appropriate form of the sentence 
in the second language. In short, for a translation between two languages, one re
quires not only a dictionary but also agrammar, the rules of which tell us how some 
operations performed on the words of the first language are reflected in the second 
language. The same principle applies to the ~-transformation. When subjecting 
some original function to a specified operation, like differentiation, then there is a 
corresponding operation that acts upon the image function. Similarly, when one 
forms a sum, or a product, or some other association of several original functions, 
then the corresponding image functions are to be combined in a certain manner. 
That is, here we are interested in correspondences of operations rather than those 
of functions. 

In the sequel, we shall derive these "grammatical rules" for the ~-transformation. 
We begin with the simplest modification, replacing the independent variable of the 
original function by a linear substitution, and we seek the corresponding operation 
on the image function. We start with two special cases. 

Given some original function t (t), we form a new original function h (t) by 
replacing the independent variable t by at: 

II (t) == t (a t) . 

In general, this substitution has meaning only for a > 0, since t (t) need be defined 
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for t ~ 0 only. One finds: 

£ {1I(t)} = je- sf I(at)dt=! [e-(SIIJlU I(u)du= !F(:). 
o 0 

The graph of II is obtained from the graph of 1 by a similarity deformation (shrink
ing of the t extension) with ratio 1 : a; for instance for a = 2, the abscissa of the 
graph is shrunk to one half. Therefore the above conclusion is called "Similarity 
Theorem" : 

Theorem 7.1 (Similarity Theorem). We have: 

o~-------------t O~-----b~--------------t 

Figure 3 

As a second case we consider the change of 1 (t) to 

12(t) = I(t - b) where b > o. 

The original function 1 (t) being defined for t ~ 0 only, 12 (t) has meaning only for 
t > b. For the evaluation of the \..I-transform of 12 (t), we must define /2 (t) in the 
interval 0 ;;;; t < b. This is accomplished by assigning the value zero to the func
tion 12 (t) in this interval 0 ;;;; t < b. 
Hence: 

12 (t) = 1 0 
I(t - b) 

for 0;;£ t < b 

fort~b. 

In geometric terms, we have translated or shifted the graph of 1 to the right 
through the distance b, and we used the section of the t-axis between O· and b to 
complete the graph of 12 (compare Fig. 3). 

The above presented explanation of /2 follows trivially, provided we agree to 
generally assign to any original function 1 (t) the value zero for t < o. The function 12 
can be expressed in terms of function 1 more conveniently and compactly by the 
use of the shifted unit step function introduced as example 2 in Chapter 2: 

12(t) = I(t - b) u(t - b). 
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The ~-transform of 12 (t) is found by: 

m m 

I! {/2} = f e- st f(t - b) dt = e- bs f e- su I(u) du = e-113 F (s) . 
b 0 

Theorem 7.2 (First Shifting Theorem). We have: 

f(t - b) u(t - b) o-e e- bs F(s) lor b > O. 

With the Theorems 7.1, and 7.2, we established the grammatical rules that tell 
us what operation on F (s) results from the simplest operation on I (t): the simi
larity transformation, and the translation or shifting. We shall apply these in 
several practical applications: 

Had we considered in example 6 of Chapter 2 merely the special case 
5 

costo-e 5 2+1 ' 

we could now use the Similarity Theorem 7.1, to find the more general result with 
a> 0: 

1 s/a 5 
cos a t o-e -; (s/a)2 + 1 = 52 + a2 • 

Indeed, the derived result is correct for arbitrary complex a, as shown in Chapter 2. 
In general, one should be cautious when using the Similarity Theorem 7.2 for 
negative a, and more so for complex a. Erroneous conclusions may result, although 
the f(at) may have meaning. For instance, the Bessel function 

ex> (_1)n (t)2K 
lo(t) = 6 Tn!T "2 

has the ~-transform (compare p. 266): 

for 9is> O. 

When using a = - 1 with the Similarity Theorem 7.1, one would produce: 

We find, in fact, when using ]o( -t) = ]o(t): 

We utilize the First Shifting Theorem 7.2 to find the ~-transform of the function: 

1 sin t 
I(t) = 0 

for 0 ~ t ~ 2:n; 

for t> 2:n;. 
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Figure 4 

As shown in Fig. 4, f(t) may be represented as the difference of the function 

It (t) = sin t , 

defined for t ;;;; 0, and the function 

{
o 

f2(t) = 
sin (t - 2;1t) = sin t 

for 0 ~ t ~ 2;1t 

for t> 2;1t, 

which is generated by translating the function II (t) to the right through the 
distance 2;1t. The ~-transform of the function f(t) is therefore, using Theorem 7.2: 

Consider some arbitrary periodic function p (t), having period w, which has the 
~-transform P (s). Define the function Pro (t) to be equal to p (t) within its first 
period, 0 ~ t < w, and to assume the value zero outside this interval. Employing 
the method of the example above, we can find the ~-transform of Pro (t) : 

(1) P OJ (s) = P (s) (1 - e- roS ) • 

Naturally, one may invert formula (1) to produce formula (2), by means of 
which one can determine the ~-transform P (s) of the periodic function p (t), using 
the "finite" ~-transform Pro (s) of the first period: 

(2) P(s) = l-!-ro, f e- st P(t)dt. 
o 

·So far, we have started with some original function and found the corresponding 
image function. This association is unique. In Chapter 5, we have shown by Theo-
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rem 5.1 that every image function has an essentially unique original function. 
Thus, we could employ the First Shifting Theorem 7.2 inversely; for instance, 
whenever we encounter an image function of the type F2(S) = e-bSF(s), with 
F (s) .-0 I (t), then the original function of F 2 (s) is the function I (t) shifted through 
the distance b to the right, with I (t) = 0 for t < o. In this manner we can imme
diately find the original function of 

-S...,.(S....:~'-1-:-) e - S ; 

for we have: 

1 = ~ __ 1_ ere 1 _ e-t 
s (s + 1) s s + 1 ' 

hence 

{ 
0 for 0 ~ t < 1 

__ 1 __ e- s ere 

s (s + 1) 1 _ e-(t-l) for t ~ 1. 

Combining the conclusions of the special cases expressed by Theorems 7.1, and 
7.2, we produce a general linear substitution. For this purpose consider: 

setting now: 

10 (t) = I (a t - b) with a > 0, b > 0, 

b 10 (t) = 0 for a t - b < 0 , that is, for t < -; 

Instead of successively applying Theorem 7.1 and Theorem 7.2, we evaluate the 
~-transform of 10 (t) directly: 

CD CD 

£{/o} = f e- sl I(at-b) dt =! e-(b/a)s f e-(s/a}u I(u)du= ! e-<b1a)sF(;). 
~ 0 

Theorem 7.3. We have: 

I(at - b) ere ! e-(b1a)s F(;) lor a> 0, b> 0, 

provided I (t) = 0 lor t < o. 

Replacing, in Theorem 7.3, -b by the positive number +b, we obtain the 
function I(at + b) which is defined for all t ~ o. However, this new function does 
not encompass all values of I(t), only those with t ~ b. A corresponding rule can 
be derived, which is not used as often as Theorem 7.3, although it does find appli
cations, for instance with difference equations. We derive: 
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= = 
1! {/(a t + b)} = f e-" I (a t + b) dt = ! e(6/1I). f e-(·/II)u I (u) du 

o b 

~ ! ,( •. ,. { j ,-(oJ," 1(1) 41 - j ,-("" I(q 41 } , 

o~--------------t o 
I--b--l 

Figure 5 

involving the ~-transform of I(t), and also the "finite" ~-transform 

Thus, we have established 

Theorem 7.4. We have: 

6 

Fb(S) = f e-Bt I(t)dt. 
o 

l(at+b)CHI! e(b/II)'{F{:)-Fb(:)} lor a>O,b>O. 

Selecting a = 1, as shown in Fig. 5, we specialize Theorem 7.4 to obtain 

Theorem 7.5 (Second Shifting Theorem). Wehave: 

I(t + b) CHI ebB {F(s) - Fb(S)} lor b > O. 
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Linear substitutions are not restricted to the independent variable of the orig
inal function, they may also be used with the independent variable of the image 
function. That is, we are interested in Ft{s) = F(cs + d). The constant c must 
be positive so that (cs + d), like s, varies in a right half-plane; d may assume any 
complex value. Suppose F(s) has meaning for ms> p, then Ft{s) has meaning 
for 

p-f/td 
ffi (c s + d) > p, that is, for ffi s > . 

c 
We find: 

= = = 
F1(s) = f e-(csH)' I(t) dt = ! f e-(c.H)u/c I (:) du = ! f e-sl [e-(4/C)I I (: )] dt. 

o 0 0 
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Hence, with the aid of the Uniqueness Theorem 5.1: 

Theorem 7 .6. We have: 

F(cs+d).-<>~ e-Cd/C)t/(+) 10rc>0, and complex d. 

Most frequently, we use the special case with c = 1. 

Theorem 7.7 (Damping Theorem) . We have: 

F (s + d) .-<> e-dt I (t) lor complex d. 

The designation Damping Theorem is actually justifiable only for d > 0: A 
shift of the image function through the positive distance d indicates that the 
corresponding original function is to be multiplied by the damping coefficient 
rllt, which converges to zero as t -+ 00. 

Theorem 7.7, when applied to ta 0-. r(a + 1)/sa+l, generates the new cor
respondence: 

-de ttl r(a + 1) e 0-. 
(5 + d)Hl 

for a > -1, complex d. 

Here, for a few simple problems, we developed the technique of reading the 
modifications of an original function, like translation or damping, through inspec
tion 01 the modifications 01 the corresponding image lunction. It is our aim to develop 
and enrich this technique in the sequel. Recalling the comparison of the original 
space and the image space to two languages, this faculty corresponds to the facility 
of a bilingual person who can grasp the meaning of a sentence in one language 
without prior explicit and tedious translation into the other tongue. This technique 
will prove to be particularly important in all such cases where the original function 
is not explicitly known, when, nevertheless, we can deduce information from the 
image function. 

8. The Mapping of Integration 

In Chapter 7, we investigated how a trivial and elementary operation, like linear 
transformation of the independent variable of the original function, affects the 
corresponding image function. Here, for the first time, we shall investjgate the 
effect of a transcendental operation, that is, integration of the original function, 
upon the corresponding image function. 

Theorem 8.1 (Integration Theorem). Define 
, 

!p(t) = f I(T} dT. 
o 
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It tl{t} converges tor some real s = Xo > 0, then tl{rp} converges tor s = Xo, and we 
have: 

E{rp}=.!. E{t},thatistP(s)= .!.F(s) for S=Xo and B1s>xo' 
s s 

Moreover,1 

rp(t) = o(cJ) as t ~ CX), 

hence tl{ rp} converges absolutely tor ffis > Xo. 
Remark: Observe that Xo is restricted to Xo > O. Theorem 8.1 may fail for 

Xo ~o. 
Proof of Theorem 8.1: We use de L'Hospital's rule: 
Let g (z) and h (z) be differentiable functions for z > Z; suppose that h (z) is real 

valued, and that h (z) ->- + 00 as z ->- + 00,2 and that h' (z) * O. If 

holds, then 

lim g'(z) = A 
.-+.., h' (z) 

lim g(z) = A ._co h(z) 

(for real g (z), A ± 00 are admissible). 

We define: 
• 

tp (z) = f e-Xo t rp (t) dt, 
o 

g(z) = exoztp(z), h(z) = eX,z. 

The function rp (t) is continuous, hence g (z) is differentiable for z > 0; h (z) is also 
differentiable; the function h (z) is real-valued for real Xo; h (z) ->- + 00 as Z->- + 00, 

1 'I'{t) = o{g{t)) as t ~ 00, means 

presuming g{t) * 0 as t> T. 

~-+o 
g{t) 

as t-+co, 

2 The requirement: hIt) ~ 00 as z ~ 00 is essential. De L'HospitaI's rule is incorrect without this 
hypothesis, as shown by the counter example: 

g{z)=1-e-2., g'{z) =2e-2,; 

hert); 
h(s) = 1-e-', 1I'(s) = e-'; 

g(z) g'(z) -+0 
1i"(;f -... 1 , h' (z) as z -+ co • 
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sihce Xo > 0; and h'(z) = xoezot =1= O. Using the generalized integration by parts, 
we form: 

If 

= ..!.. f e-s,' I(t) tU. 
Xo 

o 

~{f} converges for s = Xo, hence g' (z)/h' (z) tends towards F (xo)/xo as z ~ + 00. 

By de L'Hospital's rule, g(z)/h(z) has the same limit: 

This implies: 
1 4) (xo) = - F (xo) , 
Xo 

and we have demonstrated the conclusion of Theorem 8.1, concerning the exist
ence and expression of ~{p} for s = Xo. The hypotheses are certainly satisfied for 
all real x > Xo, hence: 

4)(x) = 1:.. F(x) for x > Xo. 
" 

The functions 4) (s) and F (s) are both analytic for 9ts > Xo. Consequently one 
may continue this functional equation into the half-plane 9ts > Xo. 

Rewriting the equation 

li g(z) = lim g'(:) 
m he:) h'(:) s-.co .-+(10 

explicitly, we obtain: 

lim tp (z) = 'lim ..!.- [xo tp (z) + tp' (z)] ; 
s-+ co a--+ CD ~o 



hence, 

or 
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lim '1" (z) = 0, 
.-..co 

lim e-s•1 tp(z} = 0, 
if_a> 

which verifies the last of the conclusions of Theorem 8.1. 
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The order property tp (t) = 0 (ezot), which occurs here incidentally" is quite 
revealing. From the convergence of ~{/} at s = Xo, one can draw no conclusion 
regarding the intensity of growth of I(t) as t -+ 00. Remember the example on 
p. 29 with which we demonstrated that e-Zo t I (e) need not tend towards zero for 
t -+ 00. One can, however, predict that the integral tp(t) of I(t) grows less strongly 
than eZo t. This latter property can be used profitably on occasion. 

Supplementary Remark: Suppose ~{t} converges at a complex S = So, with 
mso ~ 0, then ~{tp} converges and is equal to (l/s) ~{/} for ms > mso; for there 
exists a real Xo > 0, with mso < Xo < ms, such that ~{/} converges for s = Xo > O. 
Theorem 8.1 guarantees the conclusion. 

The Extended Convolution Theorem lOA provides another proof of Theorem 8.1 
for complex So. However, when using Riemann integration, this verification is 
restricted to functions1(t) of the class 30, which will be introduced and explained 
on p. 4S (compare also p. S2). 

9. The Mapping of Differentiation 

Using Theorem 8.1, we shall derive, in this Chapter, Theorem 9.1, which pro
vides the image of differentiation. The latter will prove extremely useful in prac
tical applications of the ~-transformation. A few introductory remarks will aid 
the subsequent development. 

The functions I (e) that are. to be investigated are defined and differentiable for 
e > 0; the derivative need not exist for t = 0: possibly, I (t) is not defined for t = 0, 
or I (t) is not differentiable at e = 0, although I (e) is defined at t = 0, as, for 
instance, shown by the two functions: I (t) = 1 for t > 0, with 1(0) = 0; and 
I (t) = 2t1/ 2 for t ~ 0, so that f' (t) = t-1/ 2• To guarantee the existence of ~{f'}, 
we require at least the existence of lim I (t) = 1(0+), since ~{f'} has meaning only 

1++0 

if f' is integrable in every finite interval; in particular, 

must exist. It is given by 

1 

1 

f f'(T} dT 
o 

lim f f'(T)dT =0 lim [/(1) -f(t)] =/(1} - lim I(t}. 
'-..+0, '-+.0 '-+0 
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Hence, 
lim I (t) = I (O+) 

1-+0. 

exists. Replacing, in Theorem 8.1, 
1 

I(t} by I'(t} and 9'(t} by f f'(or) dor = I(t} - 1(0+), 
0. 

and with 

.e {f (O+)} = I <':> for 8l s > 0 

one obtains 

Theorem 9.1 (Differentiation Theorem). II I(t} is differentiable lor t> 0, and 
~{f'} converges lor some real Xo. > 0; then the limit I(O+} exists, and ~{t} too con
verges lor s = Xo.. We have the relation 

.e{f'}=s.e{/} -/(0+) lor s =Xo., andlor 8ls>xo' 

Moreover: 

hence ~{t} converges absolutely lor 9ts > Xo.. 

Remark: Recalling the remark pertaining to Theorem 8.1, we re-emphasize the 
importance of the hypothesis Xo. > O. 

In applications involving differential equations, a generalization of Theorem 9.1 
is of importance. In the proof of Theorem 9.1, we merely used: If f' (t) exists for 
t > 0, and it is integrable in every finite interval 0 ~ t ~ T, it follows that 

1 

I(t} = I (O+) + f f'(or}dor. 
0. 

One encounters problems involving some function I (t) which is not differentiable 
for t > 0; nevertheless, a function 1(1) (t) exists, so that: 

1 

I(t) =/(0+) + f l(l)(or)dor. 
0. 

For instance, the function 

{ 
0 for 0 ~ t< 1 

I(t) = 
t -1 for t ~ 1 
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is not differentiable at t = 1. However, with 

10 for 0 ~ t< 1 
1(1) (t) = 1 

for t ~ 1 

the required relation can be satisfied. 
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The function 1(1) (t) may be called the generalized derivative l of I(t). Clearly, 
Theorem 9.1 is valid if I' (t) is replaced by 1(1) (t). 

Theorem 9:2. II I(t) has the generalized derivative l(l) (t), and ~{/(l)} converges 
lor some real Xo > 0; then tl{/} too converges lor s = Xo. We have 

l!{/(l)}=s~{t} -/(0+) lor S=xo and ms>xo. 

Moreover , 

hence tl{/} converges absolutely lor ms > Xo. 

Now, if I(t) is differentiable twice for t > 0, and ~{I"} converges for some 
Xo > 0, then we may apply Theorem 9.1 to I' instead of I, and we find that I' (0+) 
exists, that ~{/'} exists for s = xo, and that 

(1) l! {f"} = s l! {t/} -I' (0+) for s = Xo and Bts > Xo. 

Applying Theorem 9.1 once more, we conclude that 1(0+) exists, that ~{t} con
verges for s = xo, and that 

(2) l! {t'} = s l! {t} - 1(0+) for SF Xo and ms > Xo. 

Combining (1) with (2), we produce: 

l!{f"}=s2l!{/} -/(O+)s -1'(0+) for S=Xo and ms>xo. 

Moreover, we have the order relations 

By repeated applications of the above process, one establishes 

1 In the Lebesgue theory, the fact that I(t) is the integral of a function 1(1) (t) is equivalent to the prop
erty: I(t) is totally continuous. Hence, I(t) is almost everywhere differentiable in the conventional 
sense, and almost everywhere f' (t) equals 1(1) (t). 
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Theorem 9.3. II I (t) is differentiable n times lor t > 0,2 and ~{/(n)} converges 
lor some real xo > 0; then the limits 

lim I(t) = 1(0+), lim I' (t) = I' (0+), ... , lim I(n-l) (t) = I(n-l) (0+) 
''''''+0 '-+.0 1-+0 

exist, and ~{/} too converges lor s = xo. We have 

(3) E{/(n)} =sn~{I} -/(O+)sn-l -1'(0+)sn-2 - ... _/(n-l)(O+) 

lor s = Xo and/or ffl s > Xo. Moreover, 

hence ~{t}, ~{t'}, ... , ~{/(n-l)} converge absolutely lor ffis > xo· 
For the subsequent verification of the Addendum to Theorem 9.3 we require 

the generally useful 

Lemma. I I I (x) is differentiable in a < x ;£ b, and ila 

lim I(x) =>= land' lim /'(x) = l' 
........ ,,+0 ... _a+O 

exist, then upon assigning to I (a) the value 1, I' (a) exists and equals 1'. 
Proal: Define I(a) = 1; then I (x) is differentiable in the interior of the interval 

a ;;:;; x ;;:;; b, and I (x) is continuous at the end points of the interval. The mean 
value theorem of differentiation guarantees for every x, with a < x ;;:;; b, the 
existence of an intermediate abscissa ~, a < ~ < x, so that 

/(x)-/(a) =t'(~). 
x-a 

For x -7 a + 0, ~ also tends towards a; by hypothesis the right hand side tends 
to t' , and, consequently, also the left hand side, that is I' (a) = l'. 

2 The function I (I) may have a generalized n'h derivative; that is, a function I(n) (I) exists, so that 

1 

I<n-l) (I) = l(n-l) (0+) + I I(n) (T) dT. 

o 
3 The hypothesis I (x) + I is redundant; it follows from f' (x) + I'. The function f' (x) has a limit for 
x + a + 0, hence f' (x) is bounded in a neighbourhood of a, a < x ;;;; c; consequently f' (x) is Lebesgue , 
integrable, and J f'(x)dx exists. We have 

a 

c c 

I I'(u) du = lim I f'(ul du = lim [j(c) - f(x)] • 
a ........ atO... ..--+a+O 

which confirms the existence of lim I(x) . 
........ a+O 



9. The Mapping of Differentiation 43 

Now suppose, I(t) is n times differentiable not only for t > 0, but also at t = 0, 
then I(t), /' (t), .... , I{n-l) (t) are continuous at t = 0; hence the limits 1(0+), /' (0+), 
"',/{n-l)(O+) may be replaced by the values I(O),/,{O), "', I{n-l) (0). For the 
more general case, that is when I{n) (t) exists only for t > 0, the above substitution 
is also permissible, provided we assign to I (t) at t = 0 the value 1(0+), thereby pos
sibly altering I (t) at t = O. 

For n = 1, the conclusion is trivial. If in Theorem 9.3 we have n ~ 2, then 
1(0+) and /'(O+) exist. Assigning for 1(0) the value 1(0+), by the above Lemma, 
/' (0) exists and equals /' (0+). For n ~ 3, one concludes in an analogous manner 
that I" (0) exists, and equals I" (0+), and so forth. Thus, we verify the 

Addendum to Theorem 9.3. II we assign lor I (0) the value I (0+), then the deriva
tives /'(O), "', I{n-l) (0) exist. It lollows that I(t), /' (t), "', I{n-l) (t) are continuous 
lor t ~ 0, whence lormula (3) may be re-written thus: 

(4) E{/(n)} =snE{/} -/(O)sn-l _1'(O)sn-2 -'" -/{n-I)(O). 

An alternate presentation ollormula (4) is: 

{ r 1'(0) i(n-I) (0) l} 
(5) E{/{n)}=snE l(t)-l/(O)+-ll- t + ... + (n-l)1 t,,-I . 

The expression in the square brackets consists of the first n terms of the Taylor 
expansion of I (t) about the centre t = O. The function in the swung brackets, and 
its first (n - 1) derivatives vanish at t = 0, the nth derivative agrees with that 
of I (t). . 

Theorem 9.3 establishes a remarkable fact; it implies that n-fold differentia
tion, a transcendental operation, in the original space corresponds to an algebraic 
operation in the image space: the multiplication by sn, and the subtraction of a 
polynomial in s, the coefficients of which are given by the so-called initial values 
of the original function. 

In this context, we recall Theorem 6.1, which may be interpreted as a grammat
ical rule for the interpretation of the nth derivative of some image function by 
an algebraic operation which acts upon the corresponding original function. 

Theorem 9.4. The n-Iold differentiation 01 the image lunction corresponds to the 
multiplication 01 the original lunction by ( - t)n: 

F{n)(s)..o (-t)" I(t). 
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10. The Mapping of the Convolution 

In Chapters 7,8, and 9, we studied the effect of operations involving one function 
such as, for instance, differentiation. In this Chapter, we shall investigate opera
tions which involve more than one function, like sum or product of functions. 
The formula for the sum of functions 

.a {/l + js} =.a {/l} +.a {fa} 

is immediately obvious. However, the image of the product of two original func
tions, h ·/a say, is quite complicated, thus necessitating that its study be de
ferred to Chapter 31. 

By contrast, the operation of the multiplication of two image functions, Fl· F 1-, 

corresponds to an operation on the respective original function5-, h and la, which 
is relatively simple. Recalling the interpretation of the ~-integral as a continuous 
generalization of the power series, one could conjecture the sought correspondence. 
Forming the product of two convergent power series, 

tpl(Z) = 1:. aft z" and tp2(Z) = 1:. bft zft , 
8-0 __ 0 

one finds the new power series 
co 

tpl(Z) tpll(Z) = tp(z) = L: cIt Z .. , 
.. _0 

whose coefficients Cn are found, using the an and the bn, by means of the formula: 

Thus, one should expect that the result of the multiplication of two ~-integrals, 

FICs) = j e-sl It (t) dt and Fa(s) = j e-sl /a (I) dt, 

is another ~-integral 

o 0 

co 

Fl(s)Fa(s)=F(s) = f e-si f(t)dt, 
o 

the original function of which is sinrilarly composed, using the respective original 
functions, hand la, by means of the formula: 

(1) 

, 
I (t) = f 11 (1') la (t - 1') d1' . 

o 

Accordingly, the product of two image functions, Fl· Fa, would correspond to 
the combination of the respective original functions, h and fa, as shown by for
mula (1). 

The combination (1) is called the convolution (Faltung) of the functions hand 
la; it occurs in many branches of mathematics and theoretical physics, especially 
in the theory of differential equations. In several aspects, the convolution behaves 
like a product, whence it is symbolically written I,I.S a product, replacing the dot 
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of the product by the· asterisk of the convolution, and we call h (t) and la (t) the 
factors of the convolution: 

(2) 
I 

f h (T) la (t - T) dT = h • la. 
o 

We shall substantiate the above conjecture, although under hypotheses more 
stringent than those required for the power series. This is due to two difficulties: 

1. Power series converge absolutely in the interior of the domain of conver
gence; thus one may multiply power series term by term, and then rearrange the 
terms to collect terms with like powers of z. By contrast, the absolute convergence 
of ~-integrals in the interior of the domain of convergence is not guaranteed. 

2. The expression for the Cn is a finite sum: it always exists. However, the inte
gral (I) for I(t} need not exist. For instance, consider the functions 

h(t) = r t/a , la(t) = II-tj-tf2 , 

for which the convolution I (t) by (2) does not exist for t = 1, since 
t 1 

I(l} = I T-t/BII - (1 - T) I-l/a dT = I T-l dT. 
o 0 

Consequently, we shall have to request properties concerning the absolute con
vergence of the ~-integrals; moreover, we shall have to restrict the admissible 
original functions to a specific class of functions so that the existence of the inte
gral (2) is assured.1 We form the 

Class ~o 01 those absolutely integrable functions f(t), which are bounded in every 
finite interval that does not include the origin: 0 < T 1 ~ t ~ T a. 

Thus, when using Riemann integration, zero is the only point where a ~o
function may be merely improperly integrable. 

Let hand 12 designate :3o-functions, and let t be some positive, fixed abscissa; 
then t 

I/dT} I ~Mt. I/a(T)I ~Ma for2~T~t, 
and, therefore: 

'It 

I fdT) la(1 - T) dT 
o 

'12 

~ M. f I h(T) I dT, 
o 

I 'I' f h(T) /a(t -T} dT ~ Ml I I la(u) I du, 
I" 0 

that is, both parts of the integral (2) exist; consequently h * fa does exist. 

1 When using Lebesgue integration, the last restriction may be omitted, since 11 * I. exists almost every
where, and it too is Lebesgue integrable. 
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If we request, moreover, absolute convergence of the respective ~-integrals, 
then we can verify the conjectured property. 

Theorem 10.1 (Convolution Theorem). II ~{II} and ~{/z} converge absolutely 
lor s = so, and il II and /2 belong to the class :so; then ~{II * Iz} converges absolutely 
lor s = so, and we have 

.s{h * Is} - .s{h} • .s {Is} lor 9lS ~ mso . 

Prool: We define 

(3) h (t) = Is (t) = 0 for t < 0 ; 

then, for $ = so: 

+'" +'" 
(4) .s{td· .s{ts} = f e-S• T h(T) (iT' f e-s,- Is(u) du. 

The second integral is a constant, hence it may be taken under the first integra
tion symbol. Also, introducing the new variable t by the substitution: u = t - T, 

we may re-write (4) as a repeated integral: 

+'" +'" f e-S• T Ix (T) [ f e-Io ('-T) Is (t - T) de ] dT. 
-co -co 

The integrals converge absolutely; hence we may commute the order of integra
tion, leading to other repeated integrals which converge absolutely: 

j"'e-Stl[ jeD h(T)/s(t -T)dT ]dt. 
-co -co 

As a consequence of (3), we have: I I +'" f h(T) Is(t - T) dT _! ft(T) I. (t - T) 4T ~ : 
for t ~ 0 

for t < o. 

Thus, the Theorem 10.1 is verified for s = so. For ms ;;;;; mso all hypotheses are 
necessarily satisfied, and the Theorem holds for the specified range of values. 

From this Theorem we may immediately deduce some important consequences. 
Earlier, it was hinted that the convolution shares several properties with the pro
duct. Indeed, the convolution satisfies the commutative law, for the substitution 
t = u - T yields 

I I 

II * Is = f h(T) Is(t - T) dT = f h(t - u)/s(u) du = Is*h· 
o 0 
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Moreover, the convolution satisfies the associative law: 

That is, for more than two factors, it is immaterial in which succession the con
volutions are performed. Hence it suffices to write h * f2 * fa. 

Proof: Upon modifying the original functions, so that from a certain, positive 
abscissa T onwards these functions are assigned the value zero, while, for brevity, 
retaining the functional notation, we obtain absolute convergence of the ~-inte
grals ~{ft}, i = 1, 2, and 3, for every s. The same holds true for ~{It * 12}, by 
Theorem 10.1. Repeated application of Theorem 10.1 yields: 

The identical expression is obtained for ~{h * (/2 * fa)}, hence 

£{(h • /2) • f3} = £{h • (12 • f3)}' 

The Uniqueness Theorem 5.1 shows that 

(h • f2) • f3 = h • (/2 • f3) + nullfunction. 

In Theorem 10.2 we shall demonstrate that a convolution is continuous for 
t > 0; therefore, by Theorem 5.5, the nullfunction is identically zero. The con
volutions of the modified functions coincide with those of the given functions for 
o < t ~ T, and the conclusion is verified for 0 < t ~ T; the conclusion is generally 
true for all t > 0, since T was arbitrarily chosen, and for t = 0 all convolutions are 
zero. 

Now, we supply a theorem which is important for many applications. 

Theorem 10.2. Let It and f2 be So-functions; then the convolution h * f2 is continu
ous for t > O. 

Proof: Let t be a fixed, positive number. We have to demonstrate that, for 15 -+ 0, 

t+6 t 

D(t, 15) = I h(7:) /2(t + d - 7:) dT - I h(T) 12(t - T) dT 
o 0 

converges towards zero. Without loss of generality, we may assume 15 to be positive, 
since the verification for negative 15 is analogous to the one presented here. Also, 
we restrict, a priori, 

Let to designate some fixed, positive number, the precise choice of which we defer; 
res~ricting, however, 



48 10. The Mapping of the Convolution 

N ext, we decompose D (t, (5) in the following manner: 

t. 

D(t, (5) = f !1(T) [f2(t + ~ - T) - '2(t - T)] dT 
o 

t 

+ f !1(T) [f2(t + d - T) - 12(t - T)] dT 
t. 

t+" 

+ f !1(T)/2(t+d-T)dT=Il+ 12+ I a· 
I 

For the integral h, the smallest argument of Iz is (t - to), and the largest is (t + ~); 
that is, the arguments vary, at most, in the interval (tIZ, t + 1). In this interval, 
the So-function 12 is bounded: I/zl ~ M z. 
For the integral Iz, the argument of h is in the interval (to, t). The So-function !1 
is bounded in this interval by a bound that depends upon the choice of to: 
Ihl ~ ml (to). 
For the integral la, the argument of h varies in the interval (t, t + (5), that is, at 
most, in the interval (t, t + 1). In this interval we have Ihl ~ MI. 

With these indi¥idual bounds, we can produce the bound: 

~ I-~ 

I D(t, (5) I ~ 2 Mil f I II (T) I dT + ml (to) f I fz (u + (5) - 12 (u) I du 
o 0 , 

+ Mif I Iz(u) I duo 
o 

For any given e > 0, we first select to sufficiently small, to make 

t. 

2Mllf III(T) I dT < ; . 
o 

With this to, ml (to) is also specified. Next, we choose ~o > 0, so that simultaneously, 
for ° < t5 < t5oz , 

I-I. 

ml(tO) f I fz(u + (5) - 12(U) I du < ; , 
o 

2 We use the theorem: If / (t) is absolutely integrable, then for ~ .. 0, 
T 
J It (t + d) - / (t) I dt .. O. 
o 

This important theorem will be needed on p. 144 also. It is well known in the Lebesgue theory. Sur-
prisingly, it cannot be found in textbooks on Riemann integration. For a proof of the theorem for 
Riemann integrals see the author's book "Theorie und Anwendung der Laplace Transformation", 
Berlin 1937, pp. 399, 400 (Dover Publications 1942). 
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and II 

MI I I f2(u) I du < ; . 
o 

Hence, after combining the last three inequalities, we find that 

I D(t, 6) I < e for 0 < 6 < 60 , 

Special attention is called to the fact that continuity of the convolution has been 
established merely for t > O. Indeed, the convolution need not be continuous at 
t = 0: h * f2 is zero at t = 0, although h * f2 need not tend towards zero, as t -+ o. 
This is demonstrated by the example: 

t 1 

rl/2 * r 1/2 = I 1'-1/2(t - 1'r1/2 d1' = I U- 1/2(1 - U)-1/2 du 
o 0 

(5) =B(~ .~)= r(+)r(+) =n for t>O. 
2 ' 2 r (1) 

This convolution has the constant value n for t > o. Hence, as t -+ 0, the limit of 
the convolution is n. 

However, one can verify the following Theorem: 

Theorem 10.3. If one of the two So-functions, h or fz, is bounded in a neighbour
hood of zero, say Ih (t) I ~ Mi, for 0 ~ t ~ T; then the convolution h * 12 is con
tinuous for t ;;;; 0, that is, including t = O. 

Forwe have, with 0 < t ~ T: 
, t 

I It (or) fz(t - T) dT ~ MIII fz(u) I du-+O as t-+O. 
o o 

In the proof of Theorem 10.1, we used the hypothesis that both ~{h} and ~{f2} 
converge absolutely. A counterexample (compare p.56) demonstrates that this 
hypothesis cannot be disregarded entirely. We shall show, however, that the abso
lute convergence of one of the two ~-integrals is sufficient; a relaxation of the 
hypothesis that is of great importance for practical applications. This is actually an 
analogy to the theorem by Mertens in the theory of series: Multiplying an abso-

lutely converging series f an term by term with a simply convergent series 
o 

L bn, and collecting the terms of the product along the Cauchy diagonal, that is, 
n=O 

II 

cn = L a, bn_. , 
.=0 

00 ,00 00 

we obtain a converging series ~ Cn which equals ~ an • ~ bn . 
n=O n-=O n=O 
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Both Theorem 10.1 and the associative property of the convolution, the proof 
of which required Theorem 10.1, are needed in the proof of the Extended Convolu
tion Theorem 10.4. Thus, the proof of the more restricted Theorem 10.1 was not 
superfluous. 

Theorem 10.4 (Extended Convolution Theorem). II ~{II} converges absolutely 
for s = so, and ~{f2} converges simply for s = so, II and /2 being So-Iunctions, 
then ~{II * f2} converges simply for s = so, and we have 

l! {II • fz} =.l! {II} .l! {/z} tor s = so, and for ~lls > mso. 

Proof: It suffices to establish Theorem 10.4 for So = 0, since the application 
of the conclusion so derived, to e-Bot fdt) and e-Bot f2 (t), together with 

(6) 

t 

(e- s•1 II) * (e- s•1 fz) = f e- S•T 11(7:) e-S.(t-T) /2(t - 7:) d7: 
o 

establishes the unrestricted case. 

For So = 0, the hypotheses become: 

a) , a) I 

f I II(T) I aT = lim f II1(T) I aT and f IZ(T) a7: = lim f IZ(T) aT 
o 1-+ a) 0 0 I .... <Xl 0 

exist. The conclusion to be verified is: 

t I I 

lim f h*/2(T)aT == lim f h(T)dT . lim f IZ(T)dT. 
1_<Xl 0 I .... a> 0 '""a) 0 

I 

Using convolution notation, the integral f f (7:) d7: may be written compactly as 
o 

f * 1. We re-write the conclusion, using this compact notation: 

(7) lim II * fz • 1 = lim h. 1 . lim Iz * 1 . 
t-'l>OO t-:raJ I-+c:o 

First, we treat the special case: 

F 2 (0) = lim 12. 1 = 0 , 
I .... a) 

for which we must show: 

lim h * Iz * 1 = 0 . 
I .... a> 
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For this special case, with € > 0, we can select a T, so that 

I 12. 1 I < e for t ~ T. 

Moreover, 12 * 1 is a continuous function with a limit for t ~ 00; hence /2 * 1 is 
bounded for all t: 

I 12· 1 I < M for t ~ o. 

For t ~ T, we obtain the estimate: 

T t 

I It· /2. 1 I ~ f It (t - 1:)[/2 .1Hr) d1: + f It(t -1:)[/2.1] (1:)d1: 
o T 

t CD 

(8) ~ M f lit (u) I du + e f lit (u) I du. 
t-T 0 

00 

The integral f I It (u) I du exists; hence, by the Cauchy criterion of convergence, 
o 

t. 

(9) f I It (u) I du < e tor all pairs of values t2 > t1 ~ T, 
t, 

possibly after increasing T. For t ~ 2 T, we find t - T ~ T, and we may use the 
estimate (9) with the inequality (8), to find that 

j It. 12. 1 I ~ e (M + [lit (u) I dU) for t ~ 2 T. 

The expression in the round brackets is a constant, hence 

lim It. 12 • 1 = 0 , 
t-+CD 

and the conclusion (7) is true for this special case with F 2 (0) = O. 

Now, if F2(0) =1= 0, then 

converges for s = 0, and Dis > 0; it is equal to 

£{I }- Fs(O) 
2 s + I . 
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Both ~{II} and ~{e-t} converge absolutely at s = 0, whence by Theorem 10.1 

.£ {h * (F2 (0) e-t)}s =0 = .£ {tds =0' £ f}'2(O) e-'}s = 0 = £ {tds =0' (:~0n.= 0 

= £ {fds=0'F2(O) = £ {ft}. =0' £{f2}.=0' 

Addition of this last equation to the prior one yields: 

.£ {fl. f2} = .£{h}· .£{f2} for s = O. 

As demonstrated at the onset of this proof, the conclusion for s = 0 may now be 
generalized for arbitrary So. For ffis > ffiso, all hypotheses of the Theorem are 
necessarily satisfied, and Theorem 10.4 holds for ffis > ffiso. 

Notice that Theorem 10.4, unlike Theorem 10.1, does not claim absolute con
vergence of ~{II * f2}; also, the conclusions are not verified for ffis ~ 'ffiso, but 
merely for s = So, and for ffis > ffiso. 

t 

When setting f f(r:)dr: = f * 1, Theorem 8.1, for the special case of :So-functions, 
o 

is contained in Theorem 10.4. We now understand the reason for the condition 
requested with Theorem 10.1, Xo > 0, since ~{1} = l/s converges (absolutely) 
for ffis > 0 only. 

In applications, it is often necessary to differentiate convolution integrals. First 
of all, observe that II * /2 need not be differentiable for all values of t, a fact that is 

t 

easily demonstrated by the example f * 1 = f f(r:) dr:. This may fail to have a 
o 

derivative, or even a one-sided derivative, at some points. There is a well-known 
rule for the differentiation of an integral with respect to a parameter, here t, which 
appears in the limits of integration and in the integrand. However, the hypotheses 
that are usually employed in the derivation of this rule3 are quite restricting; 
hence, this rule is insufficient for our purpose. It is for this reason that we derive a 
special Theorem for the differentiation of the convolution II * /2. In practical appli
cations, one often encounters functions that exhibit kinks. That is, there are points 
where both one-sided derivatives, from the left and from the right respectively, do 
exist, but differ numerically. Thus, we approach the problem from a more general 
point of view, including the concepts of left derivative and right derivative. 

Theorem 10.5. Let h (t) be differentiable for t > 0, and let f'l (t) and f2 (t) belong to the 
class of :So-functions. 
Then, at those points t > 0, where f2 is continuous from the right (or from the left), 
f (t) = II * f2 is differentiable from the right (or from the left) . We have 

(10) 

4 ".(a) ".(a) af( ) 
4a f t(x,a)dx=.f :;.a dx+h:(a)f(h.(a),a)-h;(a)f(h,(a),a), 

II,(a) h,(a) 

provided both, h'l (",l and h'2("')' are continuous in an interval "'1 ;;:; "';;:; "'2, and 01/0'" is continuous in the 
area of the ""x-plane which is bounded by the straight lines", = al> a = "'2, and the curves x = hi (a), 
X = h2 (",). 
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For the special case with h (0+) = 0, the hypothesis concerning the continuity 0112 (t) 
is superfluous, and the (conventional) derivative I' (t) exists lor all t > 0. 4 

Remark: Observe that h need not be differentiable at t = 0, as in the example: 
l1(t) = t1/ 2• - The function 1'1 is integrable, hence lim h(t) = h(O+) exists (com-
pare p.40). t+ + 0 

Proolol Theorem 10.5: We have5 .. 
h (T) = f I~ (u) du + h (0+), 

o 
hence 

I(t) = i 12 (t - T) [I I~ (u) du + h (0+) ] dT 

, .. " 

= f 12(t -T) dT f I~ (u) du + h(o+)j 12(u) duo 
000 

For bounded functions t'I and /2. one may, without difficulty, convert the iterated 
integral into a double integral over the triangle 0 ~ u ~ T ~ t in the Tu-plane 
(see Fig. 6), for this double integral exists, since the integrand is the product of two 
factors, each depending upon one of the two variables of integration only. The 
functions f'1 and /2. being ~o-functions, are absolutely integrable. Thus the above 
conversion is also legitimate in case one or both of these ~o-functions are unbounded 
in some neighbourhood of the origin. It follows that: 

, .. 
f /2(t-T) dTf I~(u)du= If 12(t-T)/~(u)dTdu. 
o 0 0;10";10";10' 

Using the transformation 

!T= -y+t 

u=x-y 
or !X=-T+U+t 

y = -T + t 

with the Jacobian J = 1, we obtain the new double integral 

If 12 (y) I~ (x - y) dx dy, 

4 Formula-(10) may be re·written in a more detailed manner: designating the derivative from the left by 
1'_, and the derivative from the right by 1'+, we obtain: 

I'-(t) = I; * /2 + /l(Q+) la(r), I~ (t) = I; * fa + IdO+) h(t+). 

5 For the specified hypotheses. and with 6 > 0, 

hence, for d .. 0, 

.. 
f 1;(u)du=I1(")-h(a), 
o 

.. 
f I;(u)du = /1(")-11(0+). 
o 
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which is to be evaluated over the triangle 0 ~ y ~ x ~ t in the xy-plane (see 
Fig. 6). This integral may be written as an iterated integral: 

, J< 

f dx f I~ (x - y) fa (y) dy , 
o 0 

u y 

j - --- - - ---- - --- 6J t - -- --- - -- - - - -- I 

Figure 6 

for the inner integral is a convolution of :So-functions, the existence of which is 
assured.6 Thus, we find for 1 (t) : 

t J< , 

f(t) = f dx f I~ (x - y) fa(y) dy + It (0+) f 12(U) duo 
o 0 0 

In this expression, we have t only in the upper limit of integration. For the integral 
with the dummy variable x, the integrand is a convolution of :So-functions, which 
is continuous for x > 0 (not necessarily at x = 0, though); hence, this integral is 
differentiable at every point t > 0; the derivative is 1'1 * h The integral with the 
dummy variable u, which actually contributes only if It (0+) * 0, has, if 12 is 
continuous at t > 0 from the right (or left), the right (or left) derivative fa (t). 

Formula (10) may fail for t = o. This is demonstrated by the following example: 
It (t) = t1/ 2, 12 (t) = t-1/ 2• The convolution of these functions is: 

t 1 

l(t)=1t*/2= J -rl/2(t--rrl/2d-r=tf u 1/2(1_url/2du 
o 0 

= t B (~ , ~) = t r (t) (~ (1-) = ~ nt, 

which holds also for t = O. For t ~ 0, the derivative of this convolution is n/2. 
When usin~ formula (10), one finds (compare (5)): 

j 0 for t = 0 
I'(t) = ..!..t-1/2 *r 1/2 = 

2 nJ2 for t> 0, 

6 When using Lebesgue integration, we defend these conversions more easily by means of Fubini's 
theorem. 
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the correct answer for t > 0, an incorrect answer for t = O. 
Notice that although the convolution h * 12 is symmetric in h and 12, the derived 

formula for the derivative of the convolution is not symmetric. This reflects the 
asymmetric hypotheses of Theorem 10.5. 

11. Applications of the Convolution Theorem: Integral Relations 

The ~-transformation permits the transformation of the convolution, a complicated 
integral representation, into a simple algebraic prodUct. This facility can be utilized 
to produce simple proofs of integral relations which are otherwise difficult to verify. 

1. The n-Iold iterated integral (n a natural number) 

t 1'" T. 

fP,,(t) = f dTn f dTn_l ••• dT2 f I (Tl) dTI 
o 0 0 

can be written, using convolution notation, 

fP,,(t) = I(t)*!*!*···*!= 1 .. 1· ... 
1 2 " 

Applying the process that was used in the proof of the associative property of the 
convolution, we alter I (t) temporarily by assigning to it the value zero for all t beyond 
some arbitrary, fixed point, to guarantee the convergence of ~{f}, and we find by 
the Convolution Theorem 10.1: 

1 .2 { fPn} = .e {f}. £! { 1 }" = .e {f}' 7 

= .e{/}·.2{ (:~-:)I } =.2{ 1* (:::)I}' 
We retained, for brevity, the symbols I and fPn for the altered functions. Utilizing 
the continuity of the original function fPn, and upon invoking the Uniqueness 
Theorem 5.5, one finds for the iterated integral the representation by the simple 
integral , 
(1) (n 21)1 f I(T) (t- T),,-ldT. 

o 

2. The above presented derivation serves as an example of a technique that can 
frequently be employed; to determine the convolution of two original functions, 
one forms the product of the respective image functions, and seeks the original 
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function of the product. As another fine example of this method consider the 
Bessel/unction 

which has, for ffis > 0, the absolutely converging S!-transform 

1 
2{Jo} = V7+T 

(comparep. 266). By Theorem 10.1, we find for ffis > 0: 

hence 

(2) 10(t) *10(t) = sint. 

The remarkable formula (2) also Serves as the announced example by means 
of which we can demonstrate that the Convolution Theorem 10.1 may fail if we 
admit two original functions which have merely conditionally converging S!-trans
forms. We shall show (see p. 269) that! 

10(t) = l/!; cos (t - :) + 0 (rail) as t -+ co, 

and S!{10} converges absolutely for ffis > 0; for ffis = 0 it converges conditionally 
(compare proof on p. 9). However, S!{]o * Io} = s!{sint} does not converge 
fors = O. 

3. A large number of similar examples could easily be produced, The next 
example once more demonstrates the almost trivial connection in the image space 
that corresponds to a rather complicated one in the original space. 

The function 

holds a fundamental position in the theory of heat conduction (compare p. 283). 
We have the correspondence 

1 If g (t) ~ 0, then I (t) = 0 (g (tll as t -+ 00, is equivalent to 
I/(t) r;;;;; kg(t) for t ~ T, 

where k and T repre\lent constants. 
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For the image function, we use the algebraic additivity theorem: 

Hence, for the respective original functions, we find the transcendental additivity 
theorem: 

(3) 

This is, indeed, a rather complicated expression when written explicitly. In the 
footnote on p. 283 we explain the importance of the relation (3) to the theory of 
heat conduction. A direct verification of the relation (3) would occupy several pages. 
By comparison, the above verification of the relation (3) by means of the ~-trans
formation seems like magic. 

4. For the above example 2, we multiplied two ~-transforms of the Bessel func
tion 10. Now, we go the other way and split the ~-transform of the Bessel function 
10 into two factors: 

1 1 1 
J o(t) 0-4 (sa + 1)1/2 = (s + i)l/a (s _ i)1/a . 

With 

1 1 rl/2 -al 
(s + apIa e-o r (1/2) e (r( ~) = v;;) 

one finds, by the Convolution Theorem 10.1, 

, t 

= ! f T- 1/2 e-iT (t - Tr 1/2 ei(t-'&') dT = ! eil f T- 1/2 (& - Tr 1/2 e-2h dT 
o 0 

1 1 

= ! eil f U- 1/2 (1 - ur1/2 e-2itu du = ! f eil (1-2u) [u (1 - U)]-1/2 du. 
o 0 

Using the first substitution 

1 - 2 u = v, that is, u = 1 - II 1 _ u = 1 + II 
2 ' 2 

one obtains a representation of 10 by the finite Fourier intef!.ral 
+1. 

(4) Jo(t) = ! f ei lt>(l - v2rl/2 dv . 
-1 

By means of the second substitution 
v = cos q;, 1 - v2 = sin2 q; 

we produce the so-called Poisson integral 

.. 11/2 

(5) Jo(t) = ~ f eilcos~ dq; = ! f cos(t cos q;) dq!. 
o 0 
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12. The Laplace Transformation of Distributions 

The physicist needs to introduce certain concepts which enable him to mathemati
cally describe physical phenomena. One of these concepts is the "impulse" d which 
is supposed to mathematically represent a shock like, for instance, the impact of a 
hammer in mechanics, or a large voltage increase of exceedingly short duration in 
electrical engineering. Concepts of this nature cannot be comprehended within the 
frame of the classical theory of functions. However the modern theory of distribu
tions embraces these concepts in a consistent manner. Moreover, this new theory 
avoids many of the difficulties of classical analysis. Thus, we must extend the 
theory of the Laplace-transformation, which in the previous Chapters has been 
developed for functions only, to distributions. This necessitates a knowledge of the 
foundations of the theory of distributions which is understood here in the sense of 
L. SCHWARTZ. The termini and theorems of the theory of distributions employed 
here are compiled and presented in an Appendix, organized in 22 statements; in 
the text we shall refer to this Appendix whenever desirable, citing App. and the 
No. of the statement of specific interest. 

The ~-transformation, as defined in Chapter 4, refers to "right-sided" functions 
which need be defined for t ;;;;; 0 only. When considering the entire real line - 00 

< t < + 00, one must define these functions to be zero in t < O. Correspondingly, 
only those distributions will be considered which, in the open half line t < 0, are 
equal to the trivial function· distribution ° (compare App. No. 10). Equivalently, 
one can characterize these distributions as those which have the support in the 
right half-line t ~ ° (see App. No. 11). We shall designate with~' + the totality of 
these "right-sided" distributions. All locally integrable functions defined on t ~ 0, 
which are zero for t < 0, may be interpreted as function-distributions (compare 
App. No.9) and are as such included in ~'+. 

The classical ~-transformation cannot be defined for all right-sided functions; 
similarly, within the frame of Schwartz'theory, one does not define the ~-trans
formation for all distributions in ~'+, but only for a subspace of ~'+. This 
subspace may be chosen in various ways.! The method of selection used here is 
based upon the following concept: 

A distribution T is said to be of finite order if T is a distribution-derivative of a 
function h(t) which is continuous on Rl: - 00 < t < 00, that is: T = Dkh(t). 
If k designates the smallest non-negative integer, allowing this equality, then T is said 
to be of order k. 

A Remark: It is a fact that every distribution is locally a distribution-derivative of finite 
order of some continuous function." Explicitly: Consider some fixed, bounded and closed 
interval I: a ~ t ~ b; let Edr designate the subspace of Ed (see App. No.5) which is composed 
of all those functions q:>(t) which have their support (see App. No.3) entirely in I. Then for 

1 A definition based upon the Fourier transformation of distributions can be found in the book by 
L.SCHWARTZ [1], Chapter VIII, cited in the Appendix on p. 313 An alternative definition based upon a 
subspace of "tempered distributions" is introduced by b. SOHWARTZ [2], Chapter VI, and by ZEMANIAN, 

Chapter 8. 

2 Compare the book by ZEMANIAN, p. 86. 
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every distribution T there exists a function, which is continuous on RI. and a smallest integer 
number k ~ 0, so that for every rp(t) E f!fiI (see App. No. 13) : 

+00 
<T,rp) = (_I)k J hit) rp(k)(t) dt = (-1)k<h(t),rp(k)(t) = <Dkh(t),rp(t). 

-00 

For distributions of finite order, this conclusion hol.ds for every rp(t) in f!fi. 

An Example: The distribution <5, the impulse, is defined as the distribution
derivative of the unit step function u(t): <5 = Du(t) (compare App. No. 15). 
However, this in itself is insufficient to establish <5 as a distribution of finite order, 
since u(t) is not continuous on Rl. Upon integrating u(t), we obtain the unit ramp 
function: 

(1) h (t) = ° for t < 0, h (t) = t for t ~ 0, 

which is continuous on Rl. At t = 0, this ramp function fails to have a derivative; 
however, the distribution-derivative Dh(t) does exist,.since 

00 100 00 
<D h, cp> = - <h, cp'> = - S t cp' (t) dt = - t cp (t) + S cp (t) dt 

o 0 0 

00 +00 

= ° + S cp(t) dt = S u(t) cp{t) dt = <u, cp>, 
o -00 

hence Dh(t) = u(t). It follows that 

(2) D2 h{t) = Du(t) = <5, 

and we have shown that <5 is of finite order; it is of order 2. Consequently, all 
Dn <5 = <5(n) (t) are also of finite order: 

(3) <5(n) (t) = Dn+ 2 h (t). 

Theorem 12.1. Suppose the function f (t) is defined and locally integrable in 
I 

- 00 < t < + 00; and set, for some arbitrary fixed value a, h (t) = f f (i) d i. Then 

f(t) = D h (t). The function h (t) is continuous, hence f (t) is of finite order; it is of order 
o if f(t) is,continuous, otherwise of order 1. 

Proof:s We have +00 
<D h, cp) = - <h, cp') = - S h(i) cp'{i) di. 

-00 

The limits of integration are, in fact, finite. We can apply the generalized rule of 

3 Ji{I) is an integral, hence it is totally continuous. According to the Lebesgue theory, h (I) is differen
tiable almost everywhere and, almost everywhere, h' (I) = f (I). 
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integration by parts (compare the footnote2 on p.16); the contributions from the 
two ends of the interval vanish, since ffJ vanishes at these ends. Thus we obtain: 

+00 

<D h, ffJ> = S I(T) ffJ (T) dT = <I, ffJ>, 

this implies Dh = I. -00 

From all distributions of finite order we select those which are derived from 
continuous functions which satisfy the two additional requirements: 

(4) h (t) = 0 for t < 0, 

(5) ~{h (tn converges absolutely for ffis > (1, the value (1 depending 
upon h. 

The totality of the distributions selected according to the stated criteria form a 
space P)' 0 which, obviously, is a subspace of P)' +. 

For the distributions of P)'o we define the ~-transform in the following manner: 
II T eP}'o and T = Dkh(t); then we define the ~-translorm 01 T by 

(6) 2 {T} = sk 2 {h(t)} = sk H(s) = F(s). 

~{T} exists for ffis > (1 where it represents an analytic function F(s). 

Theorem 12.2. II some lunction I(t) has a ~-translorm F(s) in the classical sense, 
then ~{/} also exists in the sense 01 the theory 01 distributions and is equal to F(s). 

Prool: The function I (t) is defined for t ~ 0; for t < 0 we define it to be O. The 
I 

function h(t) = f I(T)dThas two properties. It is zero for t < 0, anditis continuous 
o 

for all t. ~{h (tn exists by Theorem 8.1; it is given by F (s)/s. By Theorem 12.1 we 
have I = Dh; hence when considering I as a distribution we find, by (6), 

2{/} =s2{h} =S~F(s) =F(s). 
s 

Definition (6) implies that the inverse ~-translormation lor distributions is unique 
in the same sense at that for functions. From ~{T} = 0 we conclude, by (6), that 
~{h(t)} = o. Hence, by the argumentation of Chapter 5, h(t) is a null function. We 
conclude that two distributions with identical ~-transforms differ by the null 
distribution. 
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13. The Laplace Transforms of Several Special Distributions 

l.T=~ 

The distribution ~ is of finite order for it is equal to D2 h (t) where h (t) designates 
the continuous unit ramp function defined by (12.1), which satisfies both condi
tions (12.4,5), the second condition with (f = O. Hence ~ has a \!-transform, which 
is given by 

(1) ~ {~} = s2~ {h(t)} = S2\! {t} = s22.. = 1 for ms > o. 
• 52 

The constant function does not occur in the image space of functions. 

2. T = ~(n) (n ;;;; 1) 

We have (compare (12.3)): 

t5(n) = Dn ~ = Dn+2 h(t), 

hence 

(2) \!{~(n)} =sn+2~{h(t)} =sn for ffis>O. 

The occurrence of powers of s with positive integer-valued exponents is remark
able, since the image space of functions contains merely powers of s with negative 
exponents. 

3. T = ~(t - a) (a > 0) 

We have (compare App. No. 17) 

"(t - a)= Du(t - a) = D2 h(t - a). 

The function h(t - a) satisfies the conditions (12.4,5), the second condition with 
(f == 0, for a > 0 (these conditions cannot be satisfied for a < 0). Thus, by Theorem 
7.2: 

(3) \!{"(t -an =s2~{h(t -an =s2e-as~{h(tn =e-as for ffis>O. 

Thus the exponential function, which cannot be the ~-transform of a classical 
function (compare the remarks towards the end of Chapter 5), is entered into the 
image space, at least for positive a. 

Pseudo/unctions 

The pseudofunctions of App. No. 22 have the form Dn 1 (t), where / (t) is contin
uous at all points t except t = O. The function 

t 

f I(T) dT' u(t) 
o 
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is continuous everywhere, including at the point t = O. We use (compare App. 
No.14): , , 

f(l} = ! ~ f(T} aT = D ~ f(-r) aT; 

o 0 

hence the pseudofunction is given by 

it is of finite order. 

The ~-transform of the latter is, by definition (12.6), using Theorem 8.1, 

This demonstrates that rule (12.6) may immediately be formally applied to the 
original definition of the pseudofunction. 

(4) 

In the sequel we shall use the correspondence 

~ { log I} = - log $s + C (C = Eulers constant). 

4. Pf [t- 1 u(I)] = D [log I' u(e)] 

~ {Pf [t- 1 u(t)]} = s ~ {log e} = - log s - C 

5. Pf [e-2u(e)] = - D2 [loge· u(e)] - 15'(e) 

(5) ~{Pf[I-2u(e)]} = -s2~{logt} -s =s(logs+C)-s 

(6) 

=s(logs+C -1) 

6. Pf [e-n u{e)] = (-1)"-1 {Dn [log e· u(e)] + ('I'(n) + C) 15<n-l) (e) (n ;?; 1) 
(n-l) I 

~{Pf [e-nu(f)]} = (-1)·-1 (-sn logs + C + ('I'(n) + C) sn-l} 
(n-l) I s 

= (-1)· Sn-l (log S - 'I'(n)} 
(n-l)1 

7. Pf [e-A u(e)] = Dn[ (-I)· I-Hn u(e)] 
. (l - 1) ... (l - n) 

(A> 1, not an integer,. -A + n > -1, n an integer) 
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\I {Pf [t-A u(tm = sn (-1)" r(-.1. + n + 1) 
(.1.-1) ... (.1.-n) s-).+,.+1 

r(-.1.+n + 1) 
(-.1. + 1) •.. (-.1. + n) s-).+1 . 

Because of: 

r(-).+n+1) = (-A.+n) ... (-A.+1)F(-A.+1) 

one finds: 

(7) \I {Pf[t- A u (tm = r( -.1. + 1) . 
s-A+l 

The last expression formally agrees with the correspondence (Chapter 2, example 8) . 

(8) (A. > -1). 

For all A. which are not integer-valued, one may use the same formula (8), except 
that for A. < -1 the function t). must be replaced by the pseudofunction Pf [tAu (t)J. 

By contrast, the formula (6) for negative integer-valued exponents differs con
siderably from the corresponding formula (9) for positive integer-valued exponents: 

(9) \I {tn} = r(n + 1) = ~ 
S,,+1 S .. +1 

(n =0,1, ... ). 

This is not surprising since (9) cannot have an analogous expression for n = -1, 
- 2, ... , because r(n + 1) becomes = for such n. 

When studying the right hand sides of the formulae (7), (8), (9), one observes 
that only the powers 1, s, s2, ... are missing. This reflects the fact that, by (1) and 
(2), these powers do not correspond to powers of t; instead they are the transforms 
of <5, <5', <5", .... When starting with the powers s-OC and searching for the corres
ponding originals, fa, one finds, for the family of the fa, the definition: 

(10) I la-l 

r(oc) u(t) 

la-l 
fa = Pf r(oc) u(t) 

<5(n) 

fora >0 

for a < 0, a =F - 1, - 2, ... 

for a = - n = 0, - 1, - 2, ... 

Hence, w.e have here the single expression for the ~-transforms of the fa: 

(11) \I{fa} = s-a (IX arbitrary real). 

One can easily verify the rule: 

(12) Dk fa = fa-k (k = 1,2, ... ) 

for the family of the fa. 
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14. Rules of Mapping for the ~-Transformation of Distributions 

Throughout this Chapter 14, we shall presume that 

TEfj~, so that T = D'k h(t), 

where h(t) represents a function which complies with the conditions 
(12.4,5), and we shall use: 

~{T} =s'k~{h} =s'kH(s) =F(s). 

The Translation of a Distribution 

The shift or translation of a function cp (t) through a distance of positive or nega
tive length b or, equivalently, the translation of the origin to the position b, may 
be visualized as the effect caused by an operator Tb: 

(1) Tb cp(t) = cp(t - b). 

The translation of a distribution T through the distance b, thus creating the 
shifted distribution.Tb T, is defined by means of formula: 

(2) <Tb T, cp(t» = <T, T-b cp(t» = <T, cp(t + b». 

For the special situation in which T is actually determined by some locally 
integrable function f(t) we find, by definition (see App. No.9), 

+00 

<Tbf(t), cp(t» = <f(t),cp(t + b» = S f(t)cp(t + b) dt 
-00 

+00 

= S f(t - b) cp(t) dt = <f(t - b), cp(t» , 
-00 

that is, in fact, Tbf(t) = f(t - b). It follows that the above suggested definition 
of the shift of a distribution is consistent with the conventional shift of functions. 

Example: For T = () one finds (compare App. No. 17) : 

<Tb fI, cp(t» = <fI, cp(t + b» = cp(b) = <fib, cp(t», 

therefore, 

(3) 

Theorem 14.1. For every b > 0, it follows that 

Tb T ~ e- b ' F(s). 

Proof: We express Tb T by means of h(t); according to (2) we have 

<Tb T, cp(t» = <D'k h(t), rp,(t + b»; 
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hence, by App. No. 13, 

00 

<Tb T, rp) = (- 1)k < h(t), rp(k) (t + b) > = (- 1)k S h(t) rp(k) (t + b) dt 
o 

00 +00 

= (_1)k Sh(t - b) rp(k)(t)dt = (_1)k Sh(t - b) rp(k)(t)dt, 
b -00 

since h(t - b) = 0, for t < b. Whence 

which implies that 

(4) 

<Tb T, rp) = <Dk h(t - b), rp(t», 

Tb T = Dk h (t - b). 

A shift of T is equivalent to a like shift of h(t). 

Application of (12.6) and Theorem 7.2 yields: 

{!{Tb T} = sk {!{h(t - b)} = Sk e- b • {!{h(t)} = e- bB {!{T}. 

The Translation of the Image Function (Analogue of the Damping Theorem) 

Theorem 14.2. The correspondence 

e-ae T o-eF(s + a) 

holds for any arbitrary complex IX. 
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Proof: We represent e-rxt T by means of h(t), invoke App. No. 18 and No. 13, 
and we find: 

<e-d T, rp(t» = <T, e-d rp(t» = <Dk h(t), e-ae rp(t» 

= (- 1)k <h(t), Dk(e-d rp(t))) 

00 

= (- 1)k ~ h(t) !: [e- d rp(t)] dt 
o 
00 Ie 

= (- 1)k r h(t) L (~ (- a)" e-d rp(k- P) (t) dtl) 
d .==0 

Ie 00 

= (- 1)k L (~)( - a)"jh(t) r d rp(k-P)(t) dt 
.. -0 

Ie 
= (- 1)k L (~ (- a)P (- 1) k-" <Dk-" [e-d h(t)], rp(t» . 

.. -0 

1 We employ here Leibniz' rule for the differentiation of a product: 

flI# Ie 
-U(t)g(t)] = ~ (!) f!P)(t)g(t-")(t). 
dt" ~ • 

v-o 
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It follows that 

k 

(5) e-at T = L (~) aO Dk-' [rat h(t)]. 
0=0 

Application of Theorem 7.7 produces: 

k 

~{e-at T} = L (~) aO sk-O~{e-at h(t)} = (s + a)k H(s + a) 
0=0 

= F(s + a). 

The Derivative 01 a Distribution 

Theorem 14.3. For the nth distribution-derivative 01 T we have the correspondence: 

Dn T ~ sn F (s) . 

Prool: We have 

T = Dk h(t) and Dn T = Dn+k h(t), 

hence 

~{T} = sk~ {h} and ~{Dn T} = sn+k~ {h}; 

consequently, 

~ {Dn T} = sn~{T}. 

Theorem 14.3 differs from the classical Differentiation Theorem 9.3 in the ab
sence of initial values. Indeed, initial values would not have meaning, since a 
distribution does not have a specific value at a specified point. Nevertheless, 
Theorem 14.3 agrees with Theorem 9.3 for the special situation that T is, in fact, 
a function I (t). Any function I (t) as a distribution in £')' + is to be assigned the 
value zero for t < 0; hence all limits from the left at t = 0, of I, /" /", ... are zero. 
If 1,1', /", ... exist as functions, having, for t -+ +0, the respective limits 1(0+), 
I' (0+), /" (0+), .. , then, by App. No. 20, 

(6) Dn I = I(n) + I(n-l) (0+) b + ... + 1(0+) b(n-l). 

If ~{/(n)} and, consequently, ~{/} too exist in the classical sense, then, by Theo
rem 12.2, these also exist in the sense of the theory of distributions. The ~-trans
form of (6) is, by Theorem 14.3. using (13.2): 

sn~{t} =~{t(n)} +/(n-l) (0+) + ... + 1(0+) sn-l. 

This is the conclusion of Theorem 9.3. 
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The Differentiation of the Image Function 

Theorem 14.4. For the nth derivative of F(s) = ~{T}, we find the correspondence: 

F(fI) (s) .~ (- t)fI T. 

Proof: We verify the above conclusion for n = 1; the verification for n > 1 
follows by iteration. 

The representation F(s) = s1l:H(s) implies that 

F'(s) = k S1l:-1 H(s) + s1l: H'(s). 

Employing the correspondence H' (s) .-0 (- t) h (t) we find, by (12.6): 

F'(s) ~ k D1I:::"1 h(l) + D1I: [- 1 h(t)]. 

By App. No. 19: 

D1I: [I h(l» = (~) t D1I: h(e) + (t) . 1 . D1I:-l h(t) + (:) ·0, 

hence 

F'(s) ~ k Dk-l h(t) - 1 D1I: h(l) - k D1I:-l h(t) 

= - 1 D1I: h(t) = -t T. 

The Convolution of Distributions 

The convolution of two distributions can, in general, be defined only in a quite 
difficult manner, and may actually fail to exist. Fortunately, a simple definition 
can be devised for distributions from the space !»' 0, in a manner which guaran
tees the existence of the convolution. 

Suppose T 1 = Dkl hi (t) and T a = Dks ha (t) are distributions from the space !»' o. 
We define the convolution of T 1 and T a by means of the formula: 

(7) Tl .Ta = Dkl+ks [hl(t) • ha(t», 

whereby hi * ha is to be understood as the convolution of functions as explained 
in Chapter 10. The continuous functions hi and ha are ~o-functions. Hence, by 
Theorem 10.2, hi * ha is also continuous and it assumes, for t < 0, the value O. 
~{hl} and ~{ha} converge absolutely by hypothesis. Hence, by Theorem 10.1, 
~{hl * ha} too converges absolutely. We conclude that Tl * Ta is a distribution 
in the space !»' o. 

The definition (7) is a consistent extension of the classical definition of the 
convolution of functions; that is, for the special situation where T I and T a are 
generated by means of right-sided, locally integrable functions It and fa, defini
tion (7) agrees with the classical definition (10.2). To demonstrate this fact, let us 
form the functions! 

ht{t) = It • 1 , ka (t) = fa • 1. 

Th~e are continuous for all t, and vanish for t <:; O. By Theorem 12.1 we find that 

Tl = It = D hl. Ta = fa = D ha, 
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hence, by (7), 

T I • T 2 = D2 (11 • 1 • 12 • 1) = D2 (11 • 12 • 1 • 1). 

Theorem 12.1 applied twice yields: 

T 1 • T 2 = 11 • 12. 

In the space ~' 0 one can verify the Convolution Theorem. 

Theorem 14.5 (Convolution Theorem). Given two distributions TI and T2 from 
the space ~/O with the respective 2-transforms FI(s) and F2(S), we conclude that 

T 1 • T2 o-e FI(s) . F2(S). 

Proof: Applying the 2-transformation to formula (7), as specified in (12.6), one 
obtains: 

By Theorem 10.1, 

hence 

The commutative property of the convolution follows from formula (7); it is 
inherited from the commutative property of hI * h2• The associative property of 
(7) is shown by means of the Convolution Theorem (compare p.47). 

The Convolution with the Distribution b 

Formula (12.2) implies that: 

lJ = D2 [u(t) • 1] = D2 [1 • 1J. 

For T = Dkh(t) one finds, by (7), 

T.lJ = Dk+2 [h(t).1 .1] = Dk h(t) , 

hence 

(8) 

The same conclusion is reached by means of the Convolution Theorem: 

2{T .lJ} = ~ {T}· 2{lJ} = 2{T} . 1 = 2{T}. 

Invoking the uniqueness of the inverse 2-transformation, one obtains equation (8). 
In an algebra where the product is defined by the convolution, the distribution b 

plays the role of the unit element. In particular, one observes that 

(9) 
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Formula (13.2) implies that 

~{T * 6(n)} = ~{T}' ~{6(n)} = ~{T}' sn = ~{Dn T}, 

whence 

(10) T * 6(n) = Dn T. 

In the space of distributions, one may represent the distribution-derivative by 
means of a convolution. Consequently, one can write a distribution-derivative 
equation (the analogue to the differential equation of functions) as an equation of 
convolutions (compare Chapter 18). 

The Distribution-Derivative of the Convolution 

Theorem 14.6. The distribution-derivative of the convolution of two distributions 
taken from the space ~'o is obtained by distribution-diflerentiation of one of the two 
distributions: 

D'" [T1 * Ta] = (D'" Tl) * Ta = Tl * (D'" Ta). 

Proof: Use of (10) and the associative property of the convolution produces: 

The same result also follows from (7), the definition of the convolution: 

Let us compare this result with Theorem 10.5 for functions, for the special case: 
m = 1. If 1'1 exists for t > 0, and It (0+) exists, then one finds, by App. No. 20, 

Dh = f~ + fl (0+) 8, 

and consequently: 

(D h) * fa = f~ * fa + h (0+) 8 * fa = f~ * fa + h (0+) /a (e) • 

15. The Initial Value Problem of Ordinary Differential Equations 
with Constant Coefficients 

An important application of the Differentiation Theorem 9.1 and the Convolution 
Theorem 10. 1 accrues when these are called to aid with the problem of integrating 
ordinary linear differential equations with constant coefficients in the interval 
t ~ 0, for specified values of the solution and some of its derivatives at t = 0, 
the initial values (Initial Value Problem). This is a problem which may be solved 
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by a familiar classical technique: First one produces a sufficient number of funda
mental solutions of the homogeneous equation, then one constructs the general 
solution as a linear combination of these; by means of the "variation of the con
stants" one seeks a special solution of the inhomogeneous equation. Addition of 
the latter to the former yields the general solution of the inhomogeneous equation. 
Lastly one must "adjust" the arbitrary coefficients so that the general solution 
agrees with the specified initial values. Theoretically, this technique seems simple; 
however it creates great difficulties in practice, particularly when applied to dif
ferential equations of higher order. By contrast, we shall observe that the method 
based upon the ~-transformation provides the solution of such problems with a 
minimum of technical effort. 

The Differential Equation of First Order 

We shall develop the method with the simplest case, the initial value problem of 
the differential equation of first order, thereby exhibiting all essential character
istics of the method. Discussions are deliberately extensive and detailed in order 
to demonstrate the particularities of the method. Whence, the reader should be 
well prepared for the problems of differential equations of arbitrary order, which 
may be dealt with more briefly. 

Consider the differential equation 

(1) y' (t) + c Y (t) = f (t) 

with the unknown y. The coefficients of y and of y' are constants; the one of y' 
is already reduced to one, by division; f (t) on the right hand side designates an 
arbitrary function which, in physical applications, is generally referred to as 
disturbing function or excitation. l The value of y (t) at t = 0 is specified so that 
uniqueness of the solution is guaranteed. We seek the solution for t > 0; the 
interval t < 0 is not considered. 

Let us be more specific; we need to find a function y (t) which satisfies the 
differential equation (1) for t > O. Obviously; one cannot expect to find such a 
solution for every conceivable disturbing function f(t). This is demonstrated by 
the simplest problem: y' (t) = f (t), which does not necessarily have a solution 
for an arbitrary f(t). The solution y(t) should extend continuously to the value 
specified at t = 0, say yo. In other words, Yo is to be the limit of the solution y (t) 
as t approaches zero through positive values: 

(2) lim y (t) = Yo, briefly: y (0+) = yo. 
1-.+0 

The reader ought to recognize early that it is not the value of y (t) at t = 0 
that is of importance, but the limit of y(t) as t -? +0; this latter interpretation 
of the "initial value problem" should be accepted from the very beginning. This 
precise distinction may seem superfluous for a single ordinary differential equa
tion, because its solution, which we shall find, and the derivatives of the solution 

1 In engineering literature f (t) is often called the input, and :y (t) the output. 
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assume the specified initial values at t = 0, and they are continuous at t = 0; 
that is, "limit" and "value" coincide. However, this is no longer true, in general, 
for systems of ordinary differential equations or for partial differential equations. 

Textbooks on differential equations usually restrict the discussion to disturbing 
functions that are continuous in the interval of integration. This restriction is 
too severe for practical applications which frequently involve disturbing functions 
with jumps (these are the simplest discontinuities), as for instance u(t - a) with 
a> 0 (compare Chapter 2, Example 2). Thus we assume: 

Al The disturbing lunction I (t) is continuous lor t > 0, with the possible excep
tion 01 isolated points 01 discontinuity a where the lunction iumps; that is, where the 
one-sided limits, I(a-) and I (a+) , exist, however I (a-) =1= I(a+). 

From Al we immediately conclude that I(t) is bounded and properly integrable 
in every interval: 0 < Tl ;;;;; t ;;;;; T2. Moreover, we require that I(t) must be at 
least improperly, absolutely integrable at t = O. We may express this (see p. 45) 
thus: 

A2. The disturbing lunction I(t) belongs to the class 01 ::.so-Iunctions. 

Thus, we do admit disturbing functions like t-1/ 2 which are not considered in 
most textbooks; functions of this type cannot be avoided, for suppose the differen
tial equation (1) has the innocent solution 2tl/2; theny'(t) = 1-1/2, and I(t) = 
t-1/2 + 2ct1/ 2• 

The differential equation (1) indicates that at those points where I (t) exhibits 
jumps, either y (t) or y' (t), or both y (t) and y' (t) must also jump. When admitting 
jumps for y(t), we cannot possibly expect uniqueness of the solution. This is 
quickly demonstrated by a simple example: y' (t) = 0 with the initial condition 
y (0+) = 1, for which we have as solution not only y (t) = 1, but also every stair
case function (a sectionally constant function) which starts at t = 0 with the 
value 1. Hence, we must require: 

Rl The solution must be continuous lor t > O. 

By this requirement, only y' (t) may exhibit jumps at discontinuity points, 
where the one-sided derivatives from the right y' + and from the left y' - differ in 
value. 2 

Now we require: 

R2 The differential equation (1) must be satisfied lor every t> 0, at least Irom 
the right and Irom the lelt; that is: 

We then have: 
(3) 

y:" + cy = I(t-), y: + cy = I(t+). 

y:(t) -y:"(t) = I (t+) -/(t-). 

• If, at some point a, y(t) is continuous, and fIt) has one-sided limits from the left and from the right, 
then by the differential equation y' (t) too has one-sided limits from the left and from the right. This 
implies, by the Lemma on p. 42, the existence of the one-sided derivatives from the left and from the 
right, at a. 
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At those discontinuity points where f (t) exhibits a jump, y' (t) too has a jump of 
the same magnitude, and y (t) has a kink. By R2, Y (t) satisfies the differential 
equation (1) strictly, wherever f(t) is continuous. 

It remains to be seen whether or not these requirements can be satisfied. 
Now we may proceed with the integration of the differential equation. In the 

previous Chapters we applied the s.!-transformation to functions. The essential 
idea of the method presented here is that we apply the s.!-transformation to the 
Equation (1); that is, we s.!-transform both sides of the Equation (1). Utilizing 
the linearity property of the s.!-operator, we find: 

(4) ~{y'} + c ~{y} = ~{f}. 

However, equation (4) has meaning only if two additional hypotheses are satisfied. 

HI The disturbing function f (t) has a s.!-transform. 

H2 The derivative of the solu#on y' (t) has a s.!-transform. 

From H2 we conclude, by means of Theorem 9.1, thaty(t) too has a s.!-transform.3 
Indubitably, there are differential equations that comply with these hypo

theSes, and others which do not. An example of the former is: y' + y = 2et with 
y(O+) = 1, having the solution yet) = et ; an example for the latter is: y' + y = 

= 2(t + 1)et2 with y(O+) = 1, having the solution yet) = et2 • However, no me
thod can sensibly be developed without some hypotheses that guarantee the 
applicability of the method, although such hypotheses are often tacitly over
looked. Moreover, we shall later dispense with the hypotheses HI and H2. 

We may now exploit the properties of the s.!-transformation, in particular the 
ones described in the Differentiation Theorem 9.1 which enable us to express 
s.!{y'} in terms of s.!{y}. At those discontinuity points where f(t) exhibits a jump, 
the derivative y' does not really exist, and we must resort to Theorem 9.2, the 
generalization of Theorem 9.1. Suppose that between 0 and t we find two discon
tinuity points to and tl, where f (t) jumps, then 

'. I y'(T) dT =y(ti)) -y(O+), 
o 

" I y'(T) dT = y(tl) - y(tt) , 

'0 
I 

I y'(T) dT = y(r) - y(t1) , 

'. 
defining for the first integral y' (to) = y' _ (to), for the second integral y' (to) = 
= y' + (to) andy' (tt) = y'-(tt), and for the third integral Y' (tt) = y' + (tt). The solu-

8 Observe that HI and H2 are interdependent through the differential equation. 
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tion y (t) is continuous, thus y (to-) = Y (to+) , Y (te) = y (t1 +); hence, by addition: 

t 

y(t) = y(O+) + f y'('r) d-r, 
o 

and all hypotheses of Theorem 9.2 are satisfied with y(l) = y' for t =F to, tt, irres
pective of the manner of definition of y(l) (t) at those discontinuity points to and tl. 

We may apply Theorem 9.2 to ~{y'} in equation (4), thereby using the limit 
y (0+), that is the initial value Yo, exactly as explained earlier. Using upper case 
letters to designate the respective ~-transforms, we write: 

(5) s Y(s) - yo + c Y(s) = F(s). 

Conforming with established terminology, we shall call Eq. (1) the Original Equa
tion, and Eq. (5) the Image Equation. 

One observes that the image equation poses a far easier problem than the 
original equation since it is a linear algebraic equation. Moreover, the specified 
~nitial value Yo which occurred separately with the original equation is now in
corporated in the image equation; it is automatically considered. 

The image equation can readily be solved: 

(6) 1 1 Y(s) =F(s) -- +Yo --. 
s+c s+c 

Supposing that the differential equation (1), complying with hypothesis HI. has 
a solution y(t), which satisfies requirements Rl and Rz and hypothesis H2, this 
solution must be amongst the original functions of Y (s). To find the sought in
verse function, we consult the Table of Transforms at the rear of this book, pos
sibly requiring the help of the "grammatical rules" developed in previous Chapters. 
For this particular problem we employ the correspondence 

1 -et --..oe 
s+c 

and the Extended Convolution Theorem 10.4, and we find the original function 
which corresponds to Y (s); it is: 

(7) y(t) = t(t) • r ct + yo r ct , 

to which an arbitrary nullfunction may be added. However, y (t) is continuous 
by Rl. and the right hand side of (7) is continuous by Theorem 10.2 and assump
tion A z. By Theorem 5.5, there corresponds but one continuous original function 
to an image function, whence (7) is the only function that need be considered. 

We are not certain that (7) is indeed a solution of the stated problem, for it 
could be that no solution exists which satisfies all requirements and hypotheses; 
if the problem fails to have a solution, the presented argumentation is unfounded. 
Consequently, verification of the solution is imperativ~. In the process of verifica
tion we shall employ an important principle, which we shall apply to other func
tional equations in the sequel. Obviously, we' must retain the assumptions Al 
and A z regarding t (t), and the requirements Rl und Rz, for these serve to specify 
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the problem. By contrast, the hypotheses Hl and H2 were introduced solely for 
the purpose of making the ~-transformation applicable to the problem. Were we 
now able to demonstrate that (7) satisfies the requirements Rl and R 2, independ
ently of H 1 and H 2, we could disregard these hypotheses, in retrospect. This 
amounts, in effect, to finding a function by any means, and then investigating under 
what most general conditions. this function is a solution of the problem. One may 
envisage this process in the following manner: one starts in a constrained domain 
of given and s~ught functions in which all hypotheses are satisfied; the solution, 
established in this constrained domain, may then be extended into the largest 
domain, where it has meaning. Thus, we shall call the basic concept of the tech
nique expounded here the Principle of Extension. 

It is indeed easy to show that (7) with the assumptions Al and A2 satisfies the 
requirements Rl and R2 as well as the specified initial condition. The convolution 
integral of (7) tends towards zero for t ~ 0, since e-ce is bounded in a neighbour
hood of zero (compare Theorem 10.3); thus (7) satisfies the initial condition. The 
continuity of y(t) for t > 0 follows by Theorem 10.2. Theorem 10.5 (compare the 
foot note of this Theorem), when applied to h (t) == e-C e, f2 (t) == f (t), shows that 
y(t) has at least one-sided derivatives for t > 0, hence: 

and we find that: 
y: + cY. = f(t-), y~ + cy = f(t+). 

For practical applications, we summarize the results of this lengthy theoretical 
discussion, and we obtain a brief set of instructions: 

When the disturbing function f(t) satisfies the assumptions Al and A2, write under 
the differential equation 

y' + cy = f(t) 

its image equation 

s Y - yo + c Y = F (s}; 

determine the solution of the latter: 

1 
Y=F(s) -+ +yo s c 

and find :the corresponding original function 

1 
s+c • 

y = f _ret + yoe-et. 

This is the solution of the differentia~ equation; it assumes the specified initial value Yo. 
and it satisfies the requirements Rl and R2. 
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This method is represented by the 
Diagram 

Original SPace: differential equation + initial condition solution 

I 1 
~-transformation ~-Ltransformation 

L I 
Image space: algebraic equation -----~) solution 
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Explanation: Instead of solving the initial value problem directly in the original 
space, we take a roundabout way and proceed via the image space following the 
arrows. 

The image function F(s) of the disturbing function mayor may not exist; it 
need not be found explicitly. Nevertheless, it might be convenient to actually 
determine the image function F (s), if this is possible, and to seek the ~-Ltrans
form of F (s) / (s + c) as an entity rather than by means of the Convolution Theo
rem. Consider, for instance, t(t) = u(t - a) with a > 0, which leads to a rather 
inconvenient convolution integral, since t (t) is defined differently in the respective 
intervals: 0 ~ t < a and a < t < 00. The differential equation 

y' + c y = u (t - a) with y (0+) = Yo 

is ~-transformed into 

hence 

Using 

s Y - Yo +c Y = 

e-a8 + _yo y = --:---:-
s(s + c) s+c· 

_1 __ = .!.. (.!.. __ 1_) .-<) .!.. (1 _ e-C') 
s (5 + c) e 5 5 + c c 

and the first Translation Theorem 7.2, we find: 

for 0 S t < a) 
= .!.. (1 _ e-C(,-a») 

for t ~ a c 
u(t - a), 

and the solution of the differential equation can be written compactly as 

y (t) = ! (1 - e-C(t-a») u (t - a) + yo ret, 

and explicitly as 

1 Yo ret for 0 ~ t < a 

y(t) = 1 (e ae ) -et 
-; - -c- - yo e for t ~ a. 
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For the three possibilities yo ~ eac/c, we observe entirely different patterns 
of behaviour of y (t) for t > a. 

Prior to the extension of the above considerations to differential equations of 
arbitrary order, we insert a section on the 

Partial Fraction Expansion of a Rational Function 

In the sequel we shall encounter image functions that are rational functions 
g (s) / p (s), where g (s) and p (s) represent polynomials in s. We shall show by 
Theorem 23.2 that every ~-transform of a function must tend towards zero for 
real-valued s -+ + 00. It follows that the degree of g (s) must be lower than the degree 
of P(s). This, we shill presume for the remainder of this section. Envisage g(s) 
and p (s), each expressed as the product of linear factors, common factors already 
being cancelled; then we recognize the zeros of p (s) as the poles of the rational 
function g(s)/P(s). Suppose IXI' is a kp.-fold zero of p, then the main part of the 
Laurent series of g/P about IXI' is given by 

~ + dp.2 + ... + dp.kp. 
s-a,.. (s-a,..)2 (s-a,..)kp. . 

Subtracting from g/P the respective main parts corresponding to the several poles 
of p: IX,.. (f-l = 1, 2, ... , m) we obtain a rational function without poles, an entire 
rational function. For s -+ + 00, this difference obviously tends towards zero; 
hence it is the constant zero. Thus we have established for g/P the partial fraction 
expansion: 

(8) g(s) =£(~+ ... +~J.I __ ) 
p(s) 1'= 1 s- a,.. (s-ap.)k,.. . 

Next we need to evaluate the coefficients d. By the most primitive method one 
writes the right hand side of (8) as a single fraction, thus reproducing the denomi
nator p (s). Then one equates the corresponding coefficients of powers of s in the 
numerator to those in g (s). In this manner one obtains a system of linear equations 
in the d,.. •. The solution of these equations is troublesome, particularly for large 
numbers of unknowns. We propose another, simpler method which will be 
introduced firstly for the special case of simple poles. 

a) p (s) has only simple zeros 

In this case, the partial fraction expansion (8) simplifies to 

g(s) = ~~ 
p(s) £..J s-a ' 

1'=1 ,.. 

with mutually distinct zeros IX,... Suppose «. is one of these zeros. We multiply the 
equation by (s - IXv) and we obtain, for s 9= lXv, 

g(s) (s-a.) = d + £ dp.(s-a.) 
pIs) ',.. = 1 S - a,.. 

I' ",. 
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Noticing the fact that p (IX.) = 0, we write the left hand side of the last equation 
in the form: 

g(s) 
P(s) -p(a.) , 

s-a. 

which has, for s -+ IX., the limit g(IX.)/P' (IX.). Notice that, IX. being a simple zero of 
p, we necessarily have p' (IX.) =1= 0, and the limit has meaning. The limit of the right 
hand side, for s -+ IX., is clearly d., hence 

d = g(a.) 
• p'(a.)' 

and the partial fraction expansion can be written thus 

(9) g(s) = i ~ _1_ 
p(s) I' =.1 p'(al') s - al' • 

In particular, for g(s) == 1, we find: 

(10) 
1 .. 1 1 --1:--p(s) - I' = 1 p'(al') s - al' . 

b) P(s) has multiple zeros 

Here we extract from (8) those terms which are related to some specific zero IX., 
and call the remainder h(s) which is holomorphic at s = IX •. Thus we have: 

g(s) = ~ + ... + d.le. h( 
p(s) s-a. ($-a.)kP + s). 

In a power series with positive exponents, one can express the coefficients by 
derivatives. We generate positive exponents thus: 

Remembering that 

we realize that the function 

is obtained from P(s) simply by deleting the factor (5 - IX.) k.; it.is a polynomial 
that assumes a non-zero value at 5 = IX,. We have 
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and by the Taylor formula: 

The (k. - A)tk derivative of h(s) (s - ex.)k. vanishes at s = ex. for k. - A 
= 0,1,2, ... , k. - 1; hence, 

(11) d _ 1 { [~](k.-A)} 
• A- (h.-A)I ,..(5) 8=0. 

(A = 1, ... , k.,) . 

For simple zeros ex., we have k. = A = 1, and we find: 

d = g(a.) 
.1 ,..,(a.)· 

In particular, for g(s) == 1, we obtain 

(12) 1 {[ 1 ](k.,-A)} 
d.A = (h.-A)l ,..(5) 8=0.· 

The Differential Equation of Order n 

The differential equation 

(13) yIn) + Cn-l y(n-l) + ... + ClY' + coy = f(t) 

is to be integrated in the interval t ;;;;; o. To permit the determination of a unique 
solution, the initial values of the solution and of the first n-l derivatives of the 
solution (that is, a total of n values) must be specified. Recalling the arguments of 
p. 70, we state this as follows: 

(14) Y (0+) = Yo, y' (0+) = y~, ... ,y(n-l) (0+) = y~n-l) . 

With regard to the disturbing function f(t), we retain the assumptions Al and 
A2 as stated for n = 1. In analogy to the requirements RI and R2 for n = 1, we 
formulate here the requirements for the solution. 

RI The functions y (t), y' (t), ... , y(n-l (t) must be continuous for t > o. 
Hence only yIn) (t) can exhibit jumps at the discontinuity points of f(t), where the 
one-sided nt k derivatives, the one from the left l~ and the one from the right 
y<,:), differ. 

R2 The differential equation (13) must be satisfied at every t > 0, at least from the 
left and from the right; that is: 

y~) + Cn-l y(n-l) + ... -+ ClY' + coy = f(t-), 

y<.:!) + Cn-l y(n-l) + ... + ClY' + coy = f(t+). 
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At discontinuity points of I (t), y(n) (t) exhibits a jump of the same magnitude 
as the one of I (t) : 

y<;')(t) - y~)(t) = I(t+) - I(r). 

At those points where I (t) is continuous, the differential equation (13) is strictly 
satisfied. 

We postulate two hypotheses to make the problem amenable to the method of 
the ~-transformation. 

Hi The disturbing lunction I (t) has a ~-translorm. 

H2 The nth derivative 01 the solution y(n) (t) has a ~-translorm. 

From H 2 we conclude, by means of Theorem 9.3, that y, y', ... , y(n-l) too have 
~-transforms. Similarly, as on p. 72,for n = 1, we conclude that a generalized nth 
derivative may be introduced when y(n) exhibits jumps. Thus we may apply 
Theorem 9.3 (compare the footnote of the theorem) to the original equation (13), 
and we find the image equation 

[sn Y - Yo sn-l - y~ sn-2 - ... - y~n-2) S - y~n-l)] 

+ Cn-l [sn-l y - Yosn-2 - y~sn-3 - ... - y~-2)] 

+ C1 [s Y - Yo] 

+ Co Y 

We define the characteristic polynomial of the differential equation (13): 

(15) P(s) = s" + cn- 1 s .. -1 + ... + C1 S + Co; 

with this, the image equation can be written as follows: 

P(s) Y(s) = F(s) + Yo (S,,-1 + cn_1 S,,-2 + ... + C2 S + c1) 

+ y~ (S,,-2 + cn _1 s,,-3 + ... + c2) 

••••••••••••••••••••• _0- •••• 

+ y~n-2) (s 
+ y~n-l) . 

= F(s). 
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This is a linear algebraic equation with the solution: 4 

(16) 

Y(s) = F(s) 
p(s) + Yo 

5,,-1 + C,,-1 5,,-2 + .~. + C25 + Cl 

P(5) 

5,,-2 + C,,-1 s,,-3 + ... + C2 

P(5) 

+ Y ( .. -2) 5 + C,,-1 
o P(5) 

+y(lI_l)_l_ 
o P(5) • 

Supposing that the initial value problem stated by (13) with (14), complying with 
hypothesis H 1. has a solution which satisfies hypothesis H 2 and requirements RI 
and R 2, this solution must have the image function (16). Observe that the initial 
values (14) which have to be specified separately with the original equation (13), 
are now incorporated into the image equation (16). Thus, the initial values are 
automatically introduced into the soltttion. 

Now we need to determine the original function of Y(s). In order to attain 
greater clarity, we separate the problem into two parts. Firstly we consider in (16) 
only the first term of the right hand side which involves F (s); that is, we are 
investigating the special case of zero initial values: the inhomogeneous differential 
equation with vanishing initial values. Secondly we consider the remaining terms 
of the right hand side of (16); that is, we are investigating the special case with 
F(s) """ 0, or equivalently, t(t) """ 0: the homogeneous differential equation with 
arbitrary initial values. We begin with the latter case. 

1. The homogeneous differential equation with arbitrary initial values 

In this special case we know a priori that all hypotheses and the assumptions of our 
method are satisfied, since the function t (t) """ 0 trivially satisfies the assumptions 
Al and A2 and the hypothesis H2. We know that every solution of the homogeneous 
differential equation is a linear combination of fundamental solutions of the type 
t1e"t; all derivatives of these fundamental solutions are continuous and have ~
transforms; thus the requirements RI and R2 and the hypothesis H 2 are satisfied. 
The solution of the initial value problem certainly exists, and it is produced by our 
method. 

First we investigate the special case with the following initial values: 

yo = y~ = ... = y~"-2) = 0, y~"-l) = 1. 

4 The polynomials of the numerator!;, when'read successively, beginning with the last term, are the 
successive stages of the evaluation procedure of p (s) by Horne~'s method. 
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With these initial values, (16) becomes: 

We define: 

1 
yes) = pes) . 

P~s) = G(s); 
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and accordingly we denote the solution y (t) of the differential equation for this 
special case by g(t). We have 

(17) 
1 

g (t) o-e G (s) = pes) , 

(18) g(n) + Cn-I g(n-I) + ... + cIg' + cog = 0, 

(19) g(O+) = g'(O+) = ... = g(n-2) (0+) = 0, g(n-I) (0+) = 1. 

In order to find g(t), we express G(5) by its partial fraction expansion. For this 
purpose we use formula (9) if all zeros aIL of p (5) are simple, formula (8) if P (5) has 
multiple zeros. For either case we can readily find the corresponding original func
tion (compare Tab. No. 5,24): 

(20) • 1 g(t) = 1: .h'(a \ eO,.' (all a", simple), 
p_IY JII 

(21) m (4 4,.1:,.) g(t) - ~ d + ...... t + ... + tJ:,.-1 eO,.' (N" k,,-multl'ple), 
- p~ ,.1 11 (kp -l)1 ""r r 

with coefficients d"u. by formula (12). 
Using the explicit solution (20), we obtain, by (19), the remarkable relations: 

• 1 •. ap ~ a~-2 
(22) 1: .h'(a) = 0, 1: .h'(a) = 0, ... , "'-' ""(a) = 0 , 

",-I Y ,. p_l Y ,. ,.=I Y '" 

(23) 
• 11-1 1: ~ - 1 (all aIL simple). 

,._lP'(a,.) -

The solution of the homogeneous differential equatiollwith arbitrary initial values 
can be obtained by application of the method of partial fractions to the rational 
functions of (16), using formula (9) or formula (8), and the subsequent ~-Ltrans
formation of the several terms. One can avoid these steps and develop the solution 
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directly by means of the solution g (t) of the above special case. By the Differentia
tion Theorem 9.3, we find, with (19): 

(24) 
1 s2 sn-l 

-e-o g(t) _s_e-o g'(t) pes) e-o g"(t), ... , pes) e-og(n-l)(t) pes) , pes) , 

(25) 
sn 

pes) - 1 e-o g(n) (t) . 

Thus we obtain the solution 01 the homogeneous equation with sPecified initial values: 

(26) 

y (t) = yo [g(n-l) (t) + Cn-l g(n- 2) (t) + ... + C2 g' (t) + Cl g (t)] 

+ y~ [g(n-2) (t) + Cn-l g(n-3) (t) + ... + C2 g(t)] 

+ y~n-2) [g' (t) + Cn-l g(t)] 

+ y~n-l) g(t). 

The functions g' (t), g" (t), ... have the same basic structure as g (t) ; that is, they are 
exponential functions, possibly multiplied by powers of t. They too are solutions 
of the homogeneous differential equation, having, however, different initial values. 
By means of (18) and (19), one can verify that y(t), given by (26), satisfies the 
specified initial values. 

2. The inhomogeneous differential equation with vanishing initial values 

For this case, we have the solution of the image equation, by (16), 

(27) 1 
Y(s) = pes) F(s) = G(s)F(s). 

For this, we find by the Convolution Theorem 10.4, using (17), the original function: 

, 
(28) y(t) =g(t) ./(t) = f g(t - T) I(T) dT. 

o 

Invoking the principle of extension, we shall demonstrate thaty(t), by (28), satis
fies the requirements Rl and R2, irrespective of the hypotheses HI and H2, 
provided I(t) satisfies the assumptrons Al and A2. First we form the derivatives 
of y(t),usingTheorem 10.5. By (19), wehaveg(O+) =g'(O+) = ... =g(n-2) (0+) =0; 
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hence y' (t), y" (t), "', y(n-2) (t) exist in the conventional sense for t > 0; they are 
given by 

(29) y' (t) = g' (t) • 1 (t), .. " y(n-l) (t) = g(n-l) (t) • 1 (t) . 

However,y(n) (t) exists from the left and from the right; we have, withg(n-l) (0+) = 1: 

(30) 
y<~) (t) = g(n) (t) • 1 (t) + 1 (t-) • 

y~) (t) = g(n) (t) • 1 (t) + 1 (t+) • 

Hence, with (18), 

y~) + Cn-l y(n-l) + .. ; + ClY' + coy 

= [g(n) + Cn-l g(n-l) + ... + Clg' + cog] .1 + 1 (t-) = 1 (t-) , 

y~) + Cn-l y(n-l) + ... + ClY' + coy = 1 (t+) • 

Moreover, g, g', "', g(n-l) are bouuded in every finite interval so that, by Theo
rem 10.3, 

(31) Y (0+) = y' (0+) = .. - = y(n-l) (0+) = O. 

We conclude that formula (28) always produces the solution 01 the inhomogeneous 
differential equation with vanishing initial values, irrespective 01 the method 01 deriva
tion employed. 

Having thus resolved all questions theoretically, one may, without hesitation, 
apply the method of the ~-transformation in every special case, feeling secure that 
the solution of the differential equation with the specified initial values will be 
obtained. This method excels the classical method by one further characteristic; 
that is, when using the ~-transformation we immediately find the solution with the 
prescribed initial values. By contrast, when using the classical method, one must 
adjust the "general solution" to fit the specified initial values. This latter process 
involves considerable labour, particularly for higher values of n, since n simultane
ous linear equations in n unknowns must be solved. The problem with vanishing 
initial values is most frequently encountered in practical applications. It implies no 
simplifications in the course of the classical method; however, it does afford a 
particularly simple form of solution when the ~-transformation is employed. 

In practical applications involving specific numerical data, one does not use the 
above -presented general formulae for the solution, inst~ad one executes the method 
thro-ugh the several steps: derivation of the image equation, partial fraction expan
sion of the solution, ~-Ltransformation into the original space. In this way one can 
make use of all possible simplifications. In particular, it is frequently possible to 
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avoid the convolution representation of the solution (27) of the inhomogeneous 
differential equation. This is done by explicit evaluation of F (s)IP (s), followed by 
the ~-l-transformation of the function F (s)IP (s) as an entity.S 

The Transfer Function 

The solution in the image space: Y (s) = G (s) • F (s) has an intriguingly simple form. 
It is for this reason that in technical applications involving differential equations, 
one attempts to extract information regarding the solution from the image func
tion. In technical literature the function G(s) is called the transfer function of the 
system which is described by the differential equation, since G(s) "transfers" the 
input function F(s) into the output function Y(s).6 

The function g (t) in (28) is, in mathematical terminology, the Green's function 
of the initial value problem. In technical literature it is called the weighting func
tion, since in formula (28) for the solution, every value f(r) of the excitation 
appears associated with the weighting factor g(t - r), which depends upon the 
time interval t - r between the action of the excitation f at time r and the obser
vation of y at time t. 

Input --....--1 
F(s) 

Transfer function 
G(s) 

Figure 7 

1------ Output 
Y(s) 

The interrelation between input, output and transfer function can be clearly 
presented in graphical form by a block diagram as shown in Fig. 7: F (s) enters the 
box, Y (s) leaves the box, the box is inscribed with G (s). 

Such block diagrams prove particularly useful when several systems are con
nected in series or in some other manner, so that the output of one system serves 

~(s) 
• 

F(s) .. 
Figure 8 

~12(S) 
6z(5) r---

L-__ --' 

12(s) 
• 

5 A number of completely evaluated solutions of differential equations of second to fifth order can be 
found in the author's book: Guide to the applications of the Laplace and Z-Transforms. Second edition, 
Van Nostrand Reinhold Company, London 1971. 

6 In engineering, the term input is used for both I(t) and F(s), and the term output for both y(t) and 
Y(s). 
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as the input of another system. In this way, the interrelation presented in Fig. 8 
is readily understood. For we have 

and, consequently, 
YI(s) = GI(S) F(s), Y2(S) = G2(S) YI(s) , 

Y 2 (S) = GI(S) G2 (S) F (S) . 

From this we can conclude that the series connection of two systems, GI (s) and 
G2 (s) respectively, behaves equivalently to a single system having the transfer 
function GI (s) G2 (s). As a typical, practical example of such a combination con
sider: some force excites a mechanical system; the mechanical motion of this 
system affects a second mechanical, or an electrical system. 

F(S}-Yz(s} Y,(s) 

r,(s) ~(S) 

>2(s) Y,(s) 

Figure 9 

Feedback is another connection of systems that can easily be explained by a 
block diagram; it is shown in Fig. 9: the function Y I (s) leaves the box which is 
designated by GI (s); Y I (s) enters the box marked G2 (s) and is altered into the 
function Y2(S); Y2(S) and another function F(s) are combined in the instmment 
markedD in which the difference F(s) - Y2(S) is formed;7 this difference enters 
the box marked GI (s) as input function. According to Fig. 9 we have the equa
tions 

YI(S) = GI(s) [F(s) - Y 2 (s)), Y2(S) = G2 (s) YI(s). 

Of interest in feedback systems is the relationship between F(s) and YI(s). It is 
obtained by elimination of Y 2 (s) : 

YI(S)=l+~l(~)GB(S)F(S)= 1 1 F(s). 
Gl (s) + G. (s) 

The transfer functions Gl (s) and G2 (s) are the reciprocal expressions of the charac
teristic polynomials, PI (s) and P2 (s), of the differential equations that describe the 
behaviour of the respective boxes. Hence, 

YI(S) = 1 F(s) = p.(s) F(s). 
1'1(S) + _1_ 1'1(S) p.(s) + 1 

1'8(S) 

7 In 'reality, one forms f (tl - :JIa (tl; however, we always interchange lower case symbols with upper case 
symbols. 
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The degree of PI (S) P2 (S) + 1 is higher than the degree of P2 (s); consequently, we 
can find the partial fraction expansion of the factor of F(s), and its original func
tion. With this, we write the output Yl (t) as a convolution. In case F (s) is a ra
tional function, as, for instance, for t (t) == u (t) with F (s) == l/s, one can inversely 
transform Y I (s) directly as an entity. 

16. The Ordinary Differential Equation, specifying Initial Values 
for Derivatives of Arbitrary Order, and Boundary Values 

The application of the ~-transformation in Chapter 15 presupposed the knowledge 
of the values of the function and its first (n - 1) derivatives at t = O. However, one 
could encounter some initial value problem with n specified values at t = 0 for 
derivatives of arbitrary order. For instance, for same third order differential 
equation one might specify the initial values I y (0), yIII (0), yIV (0). In this case, 
we would solve the problem as if y (0), y' (0), and y" (0) were given. Then we would 
form the higher derivatives, yIII(t) and yIV(t). For t = 0, we would obtain two 
linear equations in the unknowns y' (0) and y" (0). Having solved these equations, 
we can write the complete solution y (t). 

An analogous process is suggested to find the solutions of boundary value problems; 
that is, when the n values are specified not at one point, but instead at two or more 
points. If, for instance, for some third order differential equation, the values are 
specified at 0, and at 1 > O,say y (0), Y (l) and y' (l), then we derive the solution with 
y(O), y'(O), and y"(O), form the values y(l) and y' (l) and obtain two equations 
in the unknowns y' (0), y" (0). 

The same procedure can be employed when linear combinations of boundary 
values are specified instead of individual boundary values. 

To demonstrate the proposed technique, let us consider a special boundary value 
problem, the solution of which will be needed later on (see pp.282, 294). We are 
given the equation 

y"- a2 y=f(t) (oc =1= 0, complex) 

with continuous t (t), and the boundary values y (0) andy (l). Proceeding as if y' (0) 
were given instead of the specified y (l), we find the image equation: 

S2 Y - y (0) s - y' (0) - a 2 Y = F (s) 

which has the solution: 

Y(s) = F(s)_ + y(O) _s - +y'(O) 
sl-al $A-as 

1 
51 _aS ' 

1 For brevity, we shall write y(O) instead of y(O+), etc, and ym instead of y(I-), etc. 
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Hence (compare Tab. No. 15,20), 

(1) y(t) = .!.. l(t).sinhat+y(O)coshat+.!.. y'(O) sinh at. 
a a 

To gain better insight, let us separate this problem into two parts: 

I. 1 (t) ;; 0; y (0) and y (l) arbitrary. 

Substituting into (1) I(t) ;; 0, we find at t = l: 

this implies that 

It follows that 

(2) 

y(l) = y(O) cosh al + .!.. y'(O) sinh a l; 
a 

.!.. ' (0) = Y (I) - Y (0) cosh IX I 
IX Y sinh IX I . 

sinh at 
y (t) = y (0) cosh IX t + (y (l) - Y (0) cosh a l) sinh a I 

= y (0) sinh a(l- t) + (l) sinh at 
sinhal y sinh al • 

II. I(t) =$= 0; y(O) = y(l) = O. 

Substituting y (0) = 0 into (1), we find: 

and, at t = l: 
y (t) = .!.. 1 (t) • sinh at + .!.. y' (0) sinh at, 

a a 

I 

0= y(l) = .!.. f I(or) sinh a(l - or) dor + .!.. y'(O) sinh al, 
a a 

o 

which implies that 

hence, 

t 

.!.. y' (0) = - __ .1_ f 1 (or) sinh a (l - or) d or . 
a asmhal ' 

o 

, I 

1 f 1 sinh at f . (3) Y (t) = ~ I(or) sinh a(t - or) dor - ~ sinh a l I(or) smh a(l - or) dor. 
o 0 

The solution (3) can be improved in the following manner. First we split the interval 
of integration from 0 to l into two sections, one· from 0 to t, the other from t to l. 
Then we combine the two integrals from 0 to t into one, with the common denomi-
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nator sinh a.t; for this integral we have, in the integrand, the following expression: 

sinh a(t - T) sinh a I - sinh a(l - T) sinh a t 

= (sinh a t cosh a T - cosh a t sinh a T) sinh a I 

- (sinh a I cosh a T - cosh a I sinh a T) sinh a t 

= - sinh a T (sinh a 1 cosh a t - cosh a 1 sinh a I) = - sinh a T sinh a(l - t) . 

Thus, (3) can be modified into: 

, I 

y(t) = - ~ s~a(l-') f /(T) sinh aTaT -.!.. s~ al f/(T) sinh a (I - T) aT. 
a sinh al a smb al o , 

Introducing the following "Green's Function" . 

(4) 
{ 

_.!.. sinb a T sinh a(l- I) 
a sinhal 

,,(1 T' a) -" - _.!.. sinh al sinh a(l-T) 
a sinhal 

for O;:;! T;:;! t 

. for t;:;! T;:;! I, 

we obtain the simplified representation of the solution: 

I 

(5) y(t) = f ,,(1, T; a) /(T) aT. 
o 

The general solution of the boundary value problem is obtained by super
position of (2) with (5). 

Obviously, the solution has meaning only if the denominator sinha.l 9= O. The 
values a.2 9= 0, for which sinha.l = 0, that is 

as = -nl(~t (n = 1, 2,···) 

are the characteristic values (eigenvalues) of the boundary value problem. The 
homogeneous problem: f (t) == 0, y (0) ==< y (1) = 0, has the non-trivial solutions 
sin n (n/l) t (the characteristic solutions, eigensolutions), provided a.l! is a characteristic 
value; otherwise it has only the solution y (t) == O. 

The Unbounaed Interval 

Elsewhere we shall need the special case with 1 = 00. Naturally, we must inter
pret the boundary value y (00) as limy (t). The function (1) represents the totality of 

1+ 00 
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all solutions of the differential equation in 0 ~ t < 00; hence it must contain the 
solution of the boundary value problem for 1 = 00. We presume now, that 

oe2 is not negative real-valued, 

in order to exclude the characteristic values. Let oe designate the root of oe2 with 
positive real part. Replacing, in (I), the hyperbolic functions by their exponential 
representations and collecting respectively the terms with eat, and those with 
e-at, we obtain: 

_1_ I' -aT f(-r) d-r + y(O) + y' (0) ) eat 
2a e 2 2a 

o 
(6) 

+ ! __ 1_ I' eaT I(-r) d-r + y(O) _ y'(O) ) e-at 
2a 2 2a ' 

o 

and we observe that, in general, y (t) does not have a limit as t ~ oo.This indicates 
the need for some assumption regarding the behaviour of I(t), as t ~ 00, so that 
y (00) does exist, and y' (0) may be evaluated. We shall discover that a sufficient 
assumption is the existence of lim 1 (t) = 1 ( (0). Beyond that, we shall demonstrate 

thaty (00) cannot be specified arbitrarily; it must be y (00) = - I( (0)/oe2. First we 
verify the 

Lemma. II I(t) is continuous lor t ~ 0, and the lim I(t) = I( (0) exists, then we 
have, lor moe > 0: 1+ 00 

Proal: We have 

hence, 

t 

I e-a(t-T) I(-r) d-r 
o 

'" I e-a(T-I) f (-r) d-r 
I 

t 

-+ 1(00) as t -+ CXl • 
a 

f(;) = J e-a(t-T) 1(00) d-r; 

ItO 

Je-a(I-T)/(-r)d-r- I~oo) = fe-a(I-.) [/(-r) -/(oo)]d-r-/(CXl)Ie-Ov-r)d-r. 
o 0 _a> 

The difference I(-r) - I( (0) is continuous for -r ~ 0; it approaches zero as 't" ~ 00; 
hence, it is bounded: 

I I(-r) -/(00) I <M for -r~ 0, 
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and for every e > 0, there exists aT> 0, so that 

I f(-r:) - I ( 00) I < e for -r: ~ T. 

Consequently, for t > T, 

t T t f e-a(t-T) I (-r:) d-r: - f~oo) ;;:;; M f e-ma(t-<) d-r: + e f e-ma(t-r) d-r: + I f~oo) Ie-mal 
o 0 T 

< MemaT -mal + _8_ + I~I -mal = ffi a e ffia ffia e . 

For all sufficiently large t, the established bound is < 3z/ffiO(. This verifies the first 
conclusion. For the second conclusion, we use the equation 

1(;) = fe-a(T-I) I(oo)d-r:, 
I 

and we find, for t > T, 

Ire-a(r-I) I(-r:)d-r: - 1(;) 1= Ire .. a(t-t) [/(-r:) -/(oo)Jd-r: 

CD 

;;:;; e f e-ma(r-t) d-r: = ;a ' 
I 

thus establishing the second conclusion. 
We return to the presentation (6) of the solution y(t). We assume that I(t) is 

continuous for t ~ 0, and that I ( 00) exists; then 

Q) 

fe-at l(t)dt=F(a) (ffia> 0) 
o 

converges. Therefore, we can re-write the first integral of (6) in the following form: 

'" 
F(a) - fe-aT f(-r:)d-r:. 

I 

Applying the above Lemma to the modified expression, we recognize that each of 
the two integrals, multiplied with the respective exponential function, does have 
a limit. It follows that y (t) too has a limit y ( 00) as t ..... 00 if and only if 

(7) F(IX) +,y(O) + y'(O) = O. 
a a 
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Presuming this condition, one finds: 

(8) y(CXl) = _ t~:) . 

This is the only possible boundary value at t = 00. Using (7), we evaluate y' (0) 
and substitute its value into (6). In this manner we obtain the solution of the 
boundary value problem in the interval (0,00); it is: 

I m 

y(t) = y(O) e-al - 21a e-al feu f(or) dor - 21a eat f e- U f(or) dor 
o I 

m 

+ _1_ e-al fe-aT f(or) dor 
2a 

o 
I m 

= y(O) e-at "7' 21a e-at f (eaT - e-aT) f(or) dor - 21a (eat - e-at) f e-U f(or) dor. 
. 0 I 

Using the "Green's Function": 

(9) 1
- -!; e-at sinh a or 

Ym(t, or; a) = 

- .!. e-aT sinh at 
a 

for 0 ~ or ~ t 

for t ~ or< Q) 

one can write the solution compactly: 

(10) 
m 

y(t) =y(O) e-at+ f ym(t, or; a) f(or)dor. 
o 

Theorem 16.1. Given the boundary value problem in the infinite interval: 

{ 
y" _(l.2y = f (t) (1.2 complex, not negative real-valued and 9= 0; moe> 0), 
y (0) and y ( ex.) are specified; 

if the function f(t) is continuous for t ~ 0, and lim f(t) = t( 00) does exist, then the 
1+ 00 

boundary value problem has a solution if and only if y(oo) = - f(00)/oe2• 

The solution is given by (10). 

Consider the limits of the following expressions, as l -+ 00, 

and 

sinha(1-t) 
sinhal 

eaCI- t) _ e-a(I-/) 

eal_e-al 

sinh at eat_e-at 

---;---h I = al -al -+ 0 . sm a e-6 

-at -a(21-/) e -e -at 
1_.e.-2al -+ e 



92 17. The Solutions of the Differential Equation for Specific Excitations 

One could produce, with these limits, the same solution from (2) and (5). In (2) the 
term with y (1) would vanish and the remaining terms of (2) and (5) would assume 
the form of expression (10). This approach is objectionable, for we cannot be certain 
a priori that the solution of the limiting problem equals the limit of the solution. 
Moreover, in this manner one could neither explain why the boundary value at 
t = 00 does not appear in the solution, nor indicate what boundary value the 
solution assumes at t = 00. Both questions are completely answered by the deri
vation presented here under the hypothesis that I ( (0) exists. Naturally, this need 
not be the only productive hypothesis. For instance, one might investigate the 
results that can be obtained with the hypothesis that 

exists. 

co 

f I I(t) I dt, or 
o 

17. The Solutions of the Differential Equation 
for Specific Excitations 

When the differential equation (15.13) describes some physical system, then the 
solution y (t) of the homogeneous equation represents the action of the system 
that is left undisturbed, starting from an initial situation which is defined by the 
initial values Yo. y~, "', yo(n-l). This solution is a linear combination of functions of 
the type tkeat ; it is easy to survey. Therefore we disregard this part of the problem 
here, and we presume that 

(1) yo = y~ = ... = y~n-l) = 0; 

that is, the system is assumed to be initially at rest. Thus we find the corresponding 
solution in the image space: 

(2) Y(s) = G(s) F(s) 

and, consequently, in the original space: 

(3) y (t) = g (t) * I (t) . 

Occasionally we shall call the input function f (t) the excitation, and we shall 
extend this designation to the corresponding image function F (s); also, we shall 
designate the output function y(t), and its image function Y(s), as the response. 
In physics and in engineering, special test functions are often employed as excita
tions to gain insight into the behaviour of the physical system. In this Chapter, 
we shall study the response of a system to two specific excitations: the unit step 
function, and the complex oscillations. 
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1. The Step Response 

When using the unit step function u (t) as excitation, we obtain the step response 
(formerly sometimes called the transient function) Yu (t); its image function will 
be designated by Y u (s). For this function we have, by (15.27,28), 

(4) 

and 

(5) 

1 1 Yu(s) = G(s)-=--, 
s sP(s} 

t 

Yu(t) =g(t) * 1 = f g(T) dT, 
o 

since 5.l{u(t)} = 5.l{1} = lis. 
One could evaluate the convolution using the expressions (15.21) or (15.22) for 

g(t); it is simpler, however, to first express the rational function Yu(s) by its 
partial fraction expansion, and then to transform the latter into the original space. 
General formulae are quite complicated and of questionable practical value when 
p (s) has multiple roots. For actual problems of this type one can write the parti
cular partial fraction expressions by (15.8) and (15.12) without difficulties. How
ever, for most practical problems, p (s) has only simple, non-zero (the latter is true 
for Co =F 0) roots. In this case, sp (s) has only simple roots, and a general formula 
can easily be written, for we have 

I P(O) 
[s P(s)]' = P(s) + s P'(s) = 

for s = 0 

a,.. p'(a,..) for s = a,... 

Replacing p (s) by sp (s) in formula (15.10), we produce: 

1 1 1 .. 1 
Y u (s) = sp(s} = p(O} --; + ;;1 a,..p'(a,..) 

1 
s-a,.. 

which has the original function: 

(6) 
1 n ea,..t 

Yu(t) = p(O} + L a p'(a} ,..=1'" ,.. 

Formula (6) indicates that the system, which is initially at rest, responds to the 
excitation by the unit step function with the following combination: the jump 
u(t)/P (0) = u(t)/co superimposed with an aggregate of the proper oscillations eall t . 

The latter diminishes in magnitude towards zero, for-increasing t, provided we 
have for all roots mQ(~ < 0; this aggregate of oscillations represents the transient 
behaviour of the system between the initial rest position and the steady state 
liP (0) = 1/co, for large values of t. 
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The relationship between the step response Yu (t) and the function g (t) is, by (5), 

(7) y~ (t) = g(t). 

That is, as soon as Yu (t) is determined by theoretical or by experimental means, 
one can find the response of the system to any arbitrary input function 1 (t), for 
we have, by (3) and (7), 

(8) Y (t) = y~ (t) • 1 (t) . 

Invoking Theorem 10.5, we can write the relationship (8) as follows: 

(9) d 
y(t) = de [yu. IJ. 

since Yu (0) = O. The name Duhamel's lormula is associated with both formulae (8) 
and (9). 

2. Sinusoidal Excitations. The Frequency Response 

In consideration of the remarks of Chapter 1, we prefer the use of the complex 
oscillations I(t) = eiwt to the real oscillations coswt and sinwt as excitations. 
When we want to know the response of the system to the real oscillations, we 
simply use the real part or the imaginary part of the complex oscillation response. 
This convenient property stems from the following facts. Although the coefficients 
Co, CI, •• ,' Cn may, in principle, be complex valued (compare Chapter 15), they are 
real valued whenever the differential equation describes a physical system. Hence 
the coefficients of the polynomial p (s) are real valued, and the complex roots of 
p (~) occur in conjugate pairs: a., ;i •. Accordingly, in (15.20) we have conjugate 
pairs of terms 

1 a"t 
p'(a.) e 

which combine to form real valued expressions, and g (t) is real valued. The same 
argumentation can be applied to (15.21). The above conclusions follow directly 
since g (t) is the derivative of the step response, a real valued function. 

We shall use the notation yro (t) to designate the response of the system to the 
excitation I(t) == etwt, and the symbol ¥ ro(s) for the corresponding image func
tion. The image function is given by: 

G(s) 
¥ro(s) = s-im ' 

since ~{et .. t} = l/(s - iw). and the original function by: 

(10) 

t 

y",(t) = g(t) * ei .. t = eiw' f e-'WT g(-r) d-r. 
o 
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The function g(t) is the superposition of the proper oscillations (characteristic 
oscillations) of the system: eapt, possibly multiplied by powers of t (compare 
(15.20) and (15.21) ).1 These functions grow without bound for increasing t, if 
either moclL > 0, or moc lL = 0 for a multiple root, such that eapt is multiplied by 
powers of t. Physical argumentation indicates that the amplitude of any proper 
oscillation can grow beyond every finite bound only if the system possesses inner 
sources of energy. For passive systems without inner sources of energy, we must 
have moc lL ~ 0 for all roots of p (s), and roots with moc lL = 0 must be simple roots 
of the characteristic polynomial. For these latter roots, which must be of the 
form iYIL' the proper oscillations have constant amplitudes. Resorting once more 
to physical argumentation, we recognize that these oscillations with constant 
amplitudes are possible only for systems without internal energy losses. For pas
sive systems which dissipate energy through mechanical friction, Ohmic resistance, 
or the like, one can predict: moclL < 0 for all roots of the characteristic poly
nomial p (s). 

For such a system one can readily determine the steady state of Y w (t), as t -+ 00. 

If 

then obviously G(s) = ~{g(t)} converges for ms> mOC1; it certainly converges 
on the imaginary axis. That is 

CD 

G(i oo} = f e-(1II1 g(t) dt 
o 

exists, and we can write (10) as follows: 

(11) 
CD 

=G(i (0) eilD' - e'lD' f e-ilD~ g(T) dT. , 
The last term tends towards zero when t -+ 00. It follows that Yw (t) differs from 

l12) 

by an arbitrarily small amount, for sufficiently large values of t. Hence y w (t) does 
represent the steady state. 

One could express Y w (s) by its partial fraction expansion. When p (s) has 
only simple roots, all different from i 00, then we find: 

Y (s) = 1 = G(i w) + ~ 1 1 
lD (s-iw)p(s) s-iw /::'1 (a,..- iw) p'(a,..) s-a,..' 

1 I~ is customary to call the solutions of the homogeneou5 equation (proper solutions, characteristic 
solutions, eigensolutions) characteristic oscillations, proper oscillations, or eigenoscillations of the 
system, although for real valued IXtJ the functions are not oscillatory but aperiodic. 
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and in the original space: 
.. a t 

( ) G( . ) irut '\' e P 
y ru t = ~ CO e +.::::.., ( _. ) p'{ ) 

p=l ap ~w ap 

The previous expression (11) for y ru (t) has more general usefulness than the last 
one, since (11) is valid if, in the representation of the Image function: Y ru(s) = 
= G (s) / (s - i co), the function G (s) is any arbitrary £-transform which converges 
on the imaginary axis. 

So far we have presumed that the initial values of Yw(t) vanish. Observe that 
the steady state is independent of the initial values, for the superimposed solution 
(15.26) of the homogeneous equation which accounts for the contribution by the 
initial values tends towards zero, since ffilXl' < O. 

In general, G(ico) is a complex valued function: 

(13) G(i co) = I G(i co) I ei !j1(ru). 

Thus,for the steady state we have: 

(14) 

it is an oscillation having the frequency co of the excitation; its amplitude is deter
mined by I G(ico) I, and its initial phase by 'IJ'(co). 

The function G(ico)eiwt describes the steady state of the system in response 
to the excitation eiw t; it is a function of the independent variable co, the frequency 
of the excitation. We call G(ico)eiwt the frequency response of the system; the 
modulus I G(ico) I and the initial phase 'IJ'(co) are the frequency characteristics of the 
system. These are of outstanding importance in engineering; for the steady state, 
they tell how much the output is amplified or diminished and how much the phase 
of the output is shifted, when compared to the input eiw t. 

A special advantage lies in the fact that for oscillatory excitations one can 
determine the steady state of the system exclusively from G in the image space, 
without transformation into the original space. 

There is a simple relationship that connects the frequency response to the step 
response. We have, by (4), 

(15) G(i co) = i co Yu(i co) = [s ~{yu}] s=i", = ~{y~} s=i", , 

a remarkable formula of considerable technical interest, for it permits the deter
mination of the frequency response, when the step response is known. It is more 
important that, inversely, the step response may be found, when the frequency 
response is given.2 For this purpose we recall the previous remarks (see p. 94) 

2 The following remarks are included here for systematic reasons; they will be fully appreciated only 
after the study of Chapter 24. 
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concerning the real-valued coefficients of differential equations which describe 
realistic physical systems; accordingly, g(t) is real-valued. The transform ~{g(t)} 
converges for ffis > ffiOCl and consequently for ffis > o. Hence, by the Integra
tion Theorem 8.1, 

~ {y" (t)} = ~ {g (t) * 1} = G (5) for m s > O. 
5 

We now need the Complex Inversion Formula of the ~-transformation which will 
be verified in Chapter 24. The hypotheses of Theorem 24.3 are clearly satisfied; 
hence,3 for x > 0, 

1 ~+I'D> Is G(s) d _ { y,,(t) 
2ni e -- s-

~-'<D S 0 

for t> 0 

for t < 0, 

We alter the integral so that the path of integration can be moved to the imagi
nary axis. This is not possible for the integral in its present form, since G (s)/s has 
a: singularity at s = O. Thus we modify the integral by subtracting the equation 
(compare (24.19)) 

1 ~+f''''' I G(O) {G(O) 
e s--ds= 

2:zi ,,-iD> s 0 

for t> 0 

for t < 0, 

and we obtain 

1 ~+f'D> G(s) _ G(O) {y,,(t) - G(O) for t> O· 
els ds = 

2ni s f 0 ,,-''''' 0 or t < , 

At s = 0, we assign to the function [G(s) - G(O)]/s its limit, G'(O). Thus, by Rie
mann's theorem,4 this function becomes analytic at s = 0 and, consequently, at 
the entire imaginary axis and, moreover, in a strip beyond the imaginary axis. 
This function tends uniformly towards zero in 0 ;£ ffis ;£ x when s -+ 00, and, 
following the process of the proof on p. 159 one may move the path of integration 
onto the imaginary axis, where s = iy; thus one obtains: 

(16) 
1 +f"'. G(iw) - G(O) { y,,(t) - G(O) 

- e'IOJ . dw = 
2n JW 0 

-D> 

for t> 0 

for t < o. 

In Eq. (16) we already express Yu (t) by G (iw). However this expression may be 

3 The symbol V.P. before the integral is not needed in this case. 

4 If the function", (5) is analytic and bounded in 0 < Is _. So I < Q, then it has a limit 1 as s -+ so; when 
defining", (so) = I, the so completed function is analytic at So. In particular, we may invoke this theorem 
if we already know the existence of lim ",(5). 

1+1'0 
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further simplified. Consider the integration over the interval (- 00,0), and modify 
the integral as follows: 

o w f e"o> G(iW!:G(O) dw= f e-ilo> G(-~~c:-G(O) dw. 

-w 0 

The function g(t) is real-valued, hence G (0) is a real number and 

G( - i w) = G(i w), 
thus 

-tim G(- i w) - G(O) _ Ueo G(i w) - G(O) e . -e . . 
-sw sw 

Combining the two integrals, the one over the interval ( - 00, 0) as modified, and 
the other one over the interval (0, (0), one obtains as the new integrand the sum 
of the integrand plus its conjugate; it is twice the real part of the integrand. Thus 
(16) is changed into 

~ fW m {eUo> G(i w) - G(O)\ dw = {Yu(t) - G(O) for t> 0 
n 0 iw 1 0 tor t < o. 

For the integrand we find, when using (13), 

I G(iw) I ei('o> + 'P) -G(O) eito> m . IG(iw) lsin(ew + 'I) - G(O) sinew. 
sw w 

, 
hence, 

n f -;; {IG(iw) I sin(tw + 1JI) - G(O)sintw} dw= 
1 ... 1 { Yu(t) - t;(O) for t>O 

o 0 for t< o. 

The integral of the second part of the integrand exists; it is 

W f Sin~W dw = 
o 

... 
f sinu du =.:!.. 

u 2 
o 
co 

for t> 0 

f sinu n 
- -u- du = -"'2 for t < O. 

o 

It follows that the integral of the first part of the integrand also exists. Thus,we 
obtain: 

(17) 1 f IG(iw)/ . (t)d 2 
co '{ Yu(t) - G(O) for t> 0 

- sm w + 1JI w = 
now _ G t) for t < 0 . 
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From the first line of formula (17) we summarize the following conclusions. 

Theorem 17.1. A differential equation with real-valued coefficients is given. For 
mIX" < 0, we can determine the step response from the frequency characteristics 
I G(im) I and ¥'(m), by means of the formula 

(18) 
0) 

G (0) 1 fiG (i 00) I . ( ) 
Yu (t) = -2- + -;- 00 sm tm + ¥,(m) dm (t> 0). 

o 

The frequency characteristics can be obtained from a plot of the frequency 
function G(im) in polar coordinates. When plotting G(im) in rectangular coordi
nates, we use the components5 U (m) and V (m): 

(19) G(i m) = U(m) + i V(m) . 

Attention is called to the fact that Yu (t) may actually be evaluated by the 
use of only one of these components. We have 

sin (tm + ¥') = sin tm cos ¥' + cos tm sin ¥', 

I G (i m) I sin (tm + ¥') = U(m) sin tm + V(m) cos tm. 

We write the first line of (17) for t > 0, and the second line of (17) for - t, using 
the same t, 

'" ! f ! (U(m) sin tm + V(m) cos tm) dm = Yu (t) _ G~O) , 
o 

0) 

! f ! (- U(m) sintm + V(m) costm) dm = _ G~O) • 
o 

The desired result follows by subtraction and addition, with G (0) = U (0) : 

Theorem 17.2. A differential equation with real-valued coefficients is given. For 
mIX" < 0, we can determine the step response by the use of only one of the components 
of the frequency function (t > 0): when the real component is given, then we employ 
the formula 

(20) Yu (t) = ! I u ~oo) sin tm dm ; 
o 

when the imaginary component is available, then we use the formula 

'" 
(21) ( 2 f V(oo) Yu t) = -;; -w costm dm +-U(O). 

o 

5 These quantities are actually measured when investigating practical problems. 
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For many practical engineering problems the determination of the frequency 
response is easier than the determination of the step response; it is for this reason 
that the presented formulae are important. Special numerical techniques have 
been developed for the practical evaluation of the integrals (18), (20), and (21); 
these techniques benefit from the fact that w occurs in the denominator of the 
integrand which thus becomes negligibly small beyond some value of the dummy 
variable of integration. 

We must especially warn against the use of the concept of the frequency re
sponse in such cases where not all mal' are negative. To demonstrate the danger, 
consider the following technically important problem, for which the condition 
mal' < 0 is not satisfied for all roots, and which shows a behaviour entirely dif
ferent from that outlined above. The differential equation of second order 

y" + CIY' + CoY = I(t) 

describes the physical behaviour of a linear mechanical oscillator or of an electric 
RCL circuit, or the likes. The roots of the characteristic polynomial p (s) = 0 are 
given by: 

For ct/4 - Co ~ 0 we have real roots al and 1X2; the corresponding characteristic 
solutions ea,t and ea2t , or eat and teat for IXI = a2 = a, are also real-valued, aperi
odic functions. For ci/4 - Co < 0, both al and a2 are complex-valued, and the 
characteristic solutions are oscillatory. In this case we have Co > (cl/2)2, and we 
may define real valued !5 and w, so that 

Thus the characteristic solutions may be written as follows: 

that is, they represent oscillations with frequency w which are damped for !5 > o. 
Writing the second order differential equation in the convenient form 

y" + 2!5 y' + (!52 + w2) Y = I(t) , 

we can directly read the proper frequency of the system w, and the damping co
efficient !5. Thus, when oscillations are expected, then it is advisable to write the 
differential equation in this particular form at the outset. 

Now we shall investigate the special case which is encountered during the 
tuning 01 a receiver, that is when the input function 1 (t) is an oscillation with the 
same frequency and damping as the characteristic oscillations of the system: 
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where Eo and lP determine the initial amplitude and the initial phase of the ex
citation. For this case we have the differential equation: 

(22) 

which has the image equation 

S2 y - yos - Yo+ 26(sy - yo) + (62 + 002) Y = Eoei'P s+d1_i,W 

and the solution 

Firstly we investigate undamped waves, with 6 = O. In this case, the input is 
of the form const. etmt, like the excitations used in the study of the frequency 
response. However, the roots tXl and tX2lack a real negative part; they are located 
on the imaginary axis: tXl = iw, tX2 = -iw. Consequently, we cannot apply the 
above conclusion concerning the frequency response; instead, we must directly 
evaluate y (t) to obtain the sought information regarding the steady state of y (t) 
for t -+ 00, For 6 = 0, we have 

(24) Y = E ei'P 1 + s +' 1 o (s - i w) (sl + WI) yo sI + w8 Yo s. + WI • 

The denominator of the first fraction of (24) is (s - iW)2 (s + iw); its partial 
fraction expansion ha.Cl t.he form: 

1 abc 
(s - i co) (s· + ( 8) - (s - i W)2 + S - i co + s + i w . 

Determining the several coefficients as explained on p. 78, we obtain: 

1 i 1 1 1 1 
= - 2(0 (s-iw)S + 4002 s-iCtJ - 4002 

1 
(s+iw) 

i (1 1 \ 
= 2w - (S-iCO)8 + SB+WS). 

The original functions of the second and the third fraction of (24) can be deter
mined directly (see Tab. Nos.8, 14, 19), hence we have the original function of 
(24) : 

(25) y(t) = Eo eo'P 2iW (- t e"m' + ! Sinwt) + Yo coswt + y~ ! sinoot. 

Formula (25) shows that the excitation with frequency 00 causes in the system, 
not only an oscillation with frequency 00 having constant amplitude, but also 
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another oscillation, the amplitude of which increases proportionally with time t. 
Moreover, the characteristic oscillations coswt and sinwt do not diminish in 
amplitude with time. Obviously, the earlier presented concept of frequency re
sponse is not applicable here. 

Next we consider damped waves with <5 > 0. In the first term and the third 
term of (24), we replace s by (s + <5), to obtain the respective terms of (23); 
according to Theorem 7.7, this substitution is paired with the multiplication by 
e-d t of the original functions. The second term of (23) may be written as follows: 

( s+~ ~) 
yo (s + ~)2 + 002 + (s + ~)2 + 002 ; 

its original function is easily found. Thus we have, altogether, 

(26) 

+yoe-"t(coswt+! sinwt) +y~ ! e-"tsinwt. 

For growing t, the damping factor e-"t dominates also the term with the factor t, 
and y (t) tends towards zero, like the excitation t (t). 

The physical oscillations of the system are described by the real part of (26); 
it is: 

y(t) = Eo 2100 e-"t (t sin (wt + q;) - S~f{J sinwt) 

(27) 

Again we emphasize the advantages gained by the use of the complex oscilla
tions eiwt instead of the real oscillations sinwt or coswt. When using the oscilla
tion sinwt in the case <5 = 0, we would find in the denominator of the first fraction 
of (24) (S2 + w2) instead of (s - iw); the denominator would be a fourth order 
expression; its partial fraction evaluation would be more complicated. 

The response of the system to a third test function, the impulse input, will be 
presented in Chapter 18. 
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In the space of distributions, the derivative must be replaced by the distribution
derivative and, consequently, also differential equations by "distribution-derivative 
equations." In the latter, the given and the sought quantities are distributions. 
To emphasize the analogy to the case of functions, we shall employ here for the 
designation of distributions lower case letters like t, y, ... (which are usually re
served for functions) instead of the letters T, U, .... A distribution-derivative 
equation with constant coefficients has the form: 

(1) Dny + Cn_lDn-1 y + ... + clDy + coY = t· 

Earlier, we investigated differential equations in the interval t ~ 0; accordingly 
we shall specify here that y and t belong to the space !i)' +. Moreover, we intend to 
employ the ~-transformation; thus for t andy, we must specify the more restricted 
subspace !i)'o (compare Chapter 12). For the situation where t and y represent 
function-distributions which are generated by locally integrable functions, we 
must not overlook the requirement that these functions have the value zero for 
t < O. 

By (14.8, 10), the distribution-derivative equation (1) can also be written as a 
convolution equation: 

(2) (~(n) + Cn-l ~(n-l) + ... + Cl ~' + Co ~) • y = t. 

Upon development of an algebra which has the convolution as product operation, 
one could attack (2) by algebraic methods. When employing the ~-transformation, 
it is immaterial whether one starts with Eq .. (1) or with Eq. (2). For if we 
borrow the usual notations for functions, 

~{y} = Y(s), ~{t} = F(s), 

then the application of either the Distribution-Derivative Theorem 14.3 to Eq. 
(1) or of the Convolution Theorem 14.5 to Eq. (2) will yield the same image 
equation: 

(3) (sn + Cn_lSn- 1 + ... + CIS + Co) Y(s) = F(s). 

We can write the solution of (3) with the functions p (s) and G (s) introduced in 
Chapter 15: 

(4) 1 Y(s) = -F(s) = G(s) F(s). 
P(s) 

Corr-esponding to G (s) we have the weighting function g (t) as the original function 
in the space of functions (compare p. 84), and, by Theorem 12.2, also in the space 
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!!)'o of distributions. However, we must here extend the definition of g(t) assigning 
to it the value zero for t < 0, and consider it as a distribution. Consequently, we 
have: 

g(O-) = g'(O-) = ... = g(n-1) (0-) = 0 

and, by (15.19), 

(5) g(o+) = g'(O+) = ... = g(n-2) (0+) = 0, however g(n-1) (0+) = 1; 

hence, by App. No. 20, 

(6) D g = g', ... , Dn-1 g = g(n-1) , however, Dng = g(n) + ~. 

Obviously, g is in !!)'o. The original function of Y(s) is, by Theorem 14.5, 

(7) 

Y is the convolution of two distributions of !!)' 0, hence it is a distribution in!!)' o. 
In the case where t = Dk h (t), whereby h (t) complies with both conditions 

(12.4, 5), one finds, by (14.7), 

We verify that the distribution (7) satisfies the Eq. (1). Because of (6), we have 

P(D)g= Dng + Cn-1Dn-1g + ... + C1 Dg+ cog 

hence, by (15.18), 

(8) 

= g(n) + Cn-1 g(n-1) + ... + C1g' + cog + ~; 

P(D)g =~. 

Theorem 14.6 produces: 

P (D) [g .IJ = [p (D)g] • t = ~ .1 = I· 

The method of the ~-transformation encompasses every solution of (1) in!!)' 0; 
it follows that the distribution (7) is, indeed, the only solution in Pd' o. 

We shall consider a few special excitations, represented by distributions. 

The Impulse Response 

For many physical systems, important conclusions regarding the characteristics 
of the system may be drawn from its response to a strong, shock-like impulse 
excitation. Such a "shock" is mathematically represented by means of the distri
bution ~, which derived its name "impulse" from this very interpretation. The 
solution of (1) for the excitation 1 '== ~ is known in mathematics as the elementary 
solution, in physics as the impulse response. We. shall designate this solution by 
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Yd, and its ~-transform by Yd(S). We find, by Eqs. (4) and (7), using ~{~} = 1, 

(9) Y,,(s) = G(s), y" = g(t) , 

whereby g(t) is to be interpreted as a distribution. Eq. (8) provides the verification 
of this solution. Whilst g (t), when considered as a function (the weighting function) 
satisfies, by (15.18), the differential equation with ° at the right hand side, g(t), 
when considered as a distribution (the impulse response), satisfies the distribution.
derivative equation with the right hand side ~, due to the property Dk g = g(k) + b. 
In technical literature one often encounters the designation impulse response for 
the weighting function; this designation is incorrect, considering the distinction 
between the impulse response y" and the weighting function g which is shown by 
the relationship 

(10) Dny" = g(n) + b. 

The distribution b is "equal to zero" (compare App. N 0.15) for t > 0; conse
quently, this confusion is not dangerous as long as one is interested merely in the 
interval t > 0, and not in the point t = 0. Thus, one can employ empirical methods 
in practical problems to find the weighting function through the response of the 
physical system to the shock excitation. 

Response to the Excitation b(m) 

In physics, one also considers pairs of shocks, the shocks having opposite signs, 
the second one immediately following the first one. This excitation is mathemati
cally represented by b'.l Indeed, this development is extended further to excita
tions which are mathematically represented by ~(m). We shall designate the cor
responding responses by Ym, and the ~-transforms by Y m(s). Using ~{~(m)} = sm 
we find, by Theorem 14.3, 

(11) Y m(s) = sm G(s), Ym = Dm g(t). 

Assigningtog(t) the value zero for t < 0, we find for all derivatives, as t -+ -0, 
the limits 0; hence, by App. No. 20, 

Dm g (t) = [g(m) (t)] + g(m-l) (0+) ~ + g(m- 2) (0+) b' + ... + g (0+) ~(m-l), 

where we explicitly employ the rectangular brackets to emphasize the interpreta
tion of g(m) (t) as a distribution (compare App. No.9). 

We must distinguish two cases: 

a) m < n. According to (5), 

g(m-l)(O+) = g(m-2) (O+) = ... = g(O+) = 0, 

lOne may attempt to approximately visualize the impulse ~ by means of a narrow, bell-shaped curve 
with-steeply sloping flanks; seeking the derivative of this approximation, one first obtains large positive 
values which are followed by large negative values. 
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hence 

(12) Ym = [g<m) (t)) . 

b) m ~ n. According to (5), 

(13) Ym = [g<m) (t)) + g<m-l) (0+) a + g<m-2) (0+) a' + ... + gIn) (0+) a<m-n-l) 
+a<m-n) . 

The Response to Excitation by a Pseudofunction 

Suppose the excitation is described by 

t == Pf [t-A u(t)] (A> -1, not an integer). 

By App. No. 22d), we find explicitly 

Pf [t-A u(t)] = (-l)m Dm [t-Hm u(t)], 
(A. - 1) ..• (A. - m) 

whereby m is presumed to be an integer, m> A - 1. We impose the condition 
m < A < m + 1, that is m = [A], thus producing a determinate value m. It 
follows that -1 < -A + m < 0.2 

The response to this excitation is given by3 

(14) Y = (A. _ l~~. ~); _ m) {Dm [t-Hm u(t)]} • [g(t) u(t)]. 

This can be rewritten, by Theorem 14.6, as follows: 

(15) Y = (-I)m Dm ([t-Hm u(t)]. [g(t) u(t)J} 
(,1. - I) ... (A. - m) 

(in the parentheses we have the convolution of two integrable functions), or 

(16) Y = (-I)m [t-Hm u(t)] • Dm [g(t) u(t)]. 
(A. - I) ... (A. - m) 

In Equ.(16) one can express Dmg(t) by (12) or (13). One obtains: 
for m = [A] < n, 

Y= (-I)m [t-Hmu(t)].[g<m)(t)u(t)] 
(A. - I) ... (A. - m) 

2 The derivatives of t-A+ m are not integrable functions; hence one cannot replace Dm by dmjdtm, which 
latter would simply produce the function t~A. Moreover, the formula App. No. 20 cannot be employed 
here, since the derivatives fail to have limits as t ~ + O. One must avoid the erroneous interpretation of 
(14) as the solution of a differential equation with the non-integrable excitation t-A. Both the given t 
and the unknown yare distributions and they have meaning only as functionals over the space!!d 
(compare App. No. 5,6). 

3 vVe write here, more precisely, g(t)u(t) instead of g(t), since t-A+ m too has been properly augmented 
by u(t). 
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(this is the convolution of two integrable functions, that is a function or, more 
precisely, a function-distribution); 
for m = [A.] ~ n, 

y = (-I)m [t-Hm U (t)] * [g(m) (t) u (t) 
(1 - 1) ..• (1 - m) 

+ g(m-l) (0+) () + ... + g(n) (0+) !5(m-n-1) + ~(m-n)] 

= (-I)m {[t-Hmu(t)] * [g(m)(t)u(t)] 
(1 - 1) ... (1 - m) 

+ g(m-l) (O+)t-Hm u(t) +g(m-2) (0+) D [t-Hm u(t)] + ... 
+ g(n) (0+) Dm-n-1 [t-Hm u(t)] + Dm-n [t-Hm u(t)]}. 

For the special case m = n distribution-derivatives of t-J.+mu(t) do not occur, 
and Ym is a function-distribution, 

The same conclusions can be deduced by means of the ~-transform. By (13.7), 

~ {Pf [t-A u (t)]} = P( :}+~ 1) ; 

consequently, by (4), 

Y(s) = r( - A. + 1) sA-1 G(s). 

For m < A. < m + 1, one can rewrite the last expression thus: 

Y(s) = r( - A. + 1) sm [sA-m-1 G(s)]. 

The function s"-m-1 is the ~-transform of the function t-J. + mjr( -A. + m + 1), 
since -1 < A. - m -1 < 0; thus one finds, by Theorem 14.3, 

y(t)= F(-l+l) Dm[t-Hm*g(t)]. 
Fl-1+m+ 1) 

This result agrees with the representation (15). 
Excitations with integer-valued A. were excluded in the above development; 

responses to excitations of this type can be constructed by means of App. No. 22c). 

A New Interpretation ofthe Concept Initial Value 

A distribution is a functional which does not ascribe values to specified points 
of the t-axis. Whence the term initial values of a solution is meaningless in con
nection with distribution-derivative equations. However, the distributions in
clude the classical functions, and the distribution-derivative equations embrace 
the differential equations. Thus, we are led to the question: What meaning has 
the solution (7), obtained in the space of distributions, for the special case that 
both t and yare classical functions? Inspection shows that the solution (7) of the 
distribution-derivative equation corresponds to' the solution (15.8) of the differen
tial equation for vanishing initial values. The fact that (7) yields precisely this 
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solution and not the general solution apparently results from the imposed condi
tions: the solution of the distribution-derivative equation was not to be selected 
from the space fg' of all distributions, but from the subspace fg' ° of those distribu
tions which, in the interpretation of App. No. 10, are zero in the interval t < o. 

This seemingly incidental remark, nevertheless, suggests a new understanding 
of the concept "initial value". In the space of functions, we understood the initial 
value of the function y (t) as the limit y (0+) which is obtained when approaching 
t = 0 from the right; this limit is exclusively determined by the values of the 
function y (t) for t > O. (When deriving the Differentiation Theorem of the 2-
transformation, we had to interpret the initial value in exactly this mauner.) In 
the frame of distribution theory, the fact that (7) represents the solution for 
vanishing initial values reflects the condition that y is defined to be zero for t < 0; 
hence the initial value of y is to be understood as the limit y (0-), from the left; 
it is determined by the values of y for t < O. 

Actually, this interpretation of the initial value as the limit from the left is 
quite natural; indeed, it harmonizes with physical concepts. Suppose that the 
differential equation describes a physical process, with t representing the time 
variable; then we understand the initial value as the state of the solution at the 
begin of the process. However, this state is clearly the result of the past of this 
physical variable, that is, it is determined by the values of this variable for nega
tive t. The concept "initial value" in the physical sciences can be understood only 
when the past, that is the interval t < 0, has been included in our considerations. 
This occurs naturally for distributions' which, wj.thout exception, are defined on the 
entire t-axis. 

Thus, the term initial value affords two ihterpretations: The initial values Yo, 
y' 0, ... can either be interpreted as the limits from the right: y (0+), y' (0+), ... , or 
else as the limits from the left: y (0-), y' (0-), .. ·.For the problem represented by a 
single ordinary differential equation, this ambiguity is not quoted in the usual 
representation. Indeed, for this case the distinction is without consequence; for if 
we interpret the initial values as limits from the left and, nevertheless, substitute 
these into formula (15.26), we shall create a y (t) which has the same initial values 
from the right; this can easily be confirmed by verification (compare the remark 
on p. 82:). 

The above argumentation indicates that for a process which can be described 
by a single ordinary differential equation, the future for t > 0 joins the past with 
t < ° continuously at t = 0, whatever may have been the state in the past. This 
conclusion seems trivial; however, it is not really self-evident. When studying 
systems of ordinary differential equations, of which the single ordinary differential 
equation is but a special case, one may encounter solutions which fail to exhibit the 
above presented continuity. The above considerations are presented here to prepare 
the reader for situations of such character which, indeed, can be managed only 
through the theory of distributions. 
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19. The Normal System of Simultaneous Differential Equations 

We found in the ~-transformation a superior tool for the solution of the initial 
value problem involving a single differential equation of nth order, when com
pared with the classical method. This was due to the fact that with the latter one 
has to adapt the derived solution to the specified initial values, while with the 
former this is accomplished automatically in the process of solution. In the course 
of adapting the solution in the classical method, one has to solve a system of n 
simultaneous linear equations in n unknowns - a time-consuming task, particularly 
for n > 3. This favourable characteristic of the Laplace transformation is parti
cularly appreciated when solving initial value problems that involve systems of N 
simultaneous linear differential equations in N unknown functions. Indeed, the 
Laplace transformation provides the only practical method of solution of such 
problems for N > 2, requiring a tolerable amount of calculation. 

When considering a system of N differential equations of order n, one could, in 
principle, encounter in every equation with each of the N unknown functions a 
differential operator of order n. Thus, one finds in the ().th equation for y~(t) the 
expression: 

Ca{Jy(ll) + ca{J y(ll-l) + ... + c0{Jy' + ca{J y n {J .. -I {J 1 {J 0 (J • 

Some of the coefficients c may, of course, be zero; indeed, y dt) may be missing 
entirely in the oc-th equation, or only derivatives of y ~ (t) of order less than n may 
occur. To devise a more readable presentation of the equations, we introduce the 
polynomial 

(1) 

With this we can symbolically write the differential expression as follows: 

o{J (n) + + a{J '+ a{J p ( d )y en y {J • •. CI Y {J Co Y {J = a{J dt (J , 

and the system of equations assumes the form 

(2) I :'I~.(;t !~1.~.~~2. \ ;t)~~ ~ : .' ... ~.~~~ (:~! ~.~ ~ :~ ~t~ 
PNI (:t )Yl + PN2 (:t )Y2 + ... + PNN(:I )YN = tN(t). 

System (2) looks like a system of algebraic equations; that suggests the use of 
matrix calculus. Indeed, by this method one may reduce the process of solution 
to a scheme similar to that of a single differential equation.! We shall avoid this 

1 C~ompare G. Doetsch: Handbuch der Laplace-Transformation, Vol. II, p. 311, Birkhiiuser Verlag, 
Basel und Stuttgart 1955, revised edition 1972. 
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method here to make the presentation easier to understand. Moreover, to limit the 
extent of the formulae, we shall set n = 2; thus restricting ourselves to the case 
that is most frequently encountered in practical problems. For this case we can 
eliminate one of the indices when setting 

instead of (1). Based upon hypotheses analogous to those required for a single 
differential equation, one can write, for (2), the system of image equations 

N 

= F 1 (S) + E {(ab S + blp) y., (0+) + at. Y; (O+)} ,,_1 
(3) •.......................••.................•.•......•....... 

PN1(S)Y1 + ... + PNN(S) Y N 
N 

= F N(S) + E {(aN. s.+ bN.) y. (0+) + aN.y~ (O+)}, ._1 

a system of N algebraic equations in the image functions Y 1 (s), : .. , YN(S). The 
solution of this system depends upon the behaviour of the determinant of the 
pa (! (S)2 

L1(S) = det 1\ PaP(s) II· 

Each of the pall (s) is a polynomial in S of, at most, second degree; hence LI (s) is a 
polynomial in s of, at most, degree 2N. We propose now, for the remainder of this 
Chapter, a very important hypothesis: the degree ot LI (s) is exactly 2N; in which 
case we shall call the system normal; otherwise, if the degree of .1 (s) is less than 
2N, we shall call the system anomalous. The anomalous case will be investigated 
later on. In .1 (s), we replace each pall (s) by its explicit expression aallS2 + 
ba /IS + Ca /I, and we resolve LI (s) into a sum of determinants so that each of these 
in each column has only one ofthetermsaa/ls2, ba /IS, orca /I. The determinant which 
has s in its highest power, that is S2N, is the one which is formed of all the terms 
aa/lS2• Consequently, we have a normal system it and only it 

(4) A = det 1\ aap II =1= 0 (accordingly, tor the general case: det II c:P II =1= 0). 

The polynomial LI (s) has 2N zeros, some of which might be repeated. In the half
plane to the right of the root with the largest real component, we have .1 (s) =1= 0, 
hence the system (3) affords a unique solution Y 1. .•. , Y N. Repeating the process 

2 We employ here the following notation for matrices: II potl3l1; that is, we write the general element of 
the matrix between vertical double bars. For the determinant of the matrix, we write: det II potl3l1. 
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that we employed for the solution of one single differential equation, we shall 
attempt the solution in two separate steps: Firstly, we shall presume vanishing 
functions F 1, ..• , F N, and necessarily also II, ... , IN (the homogeneous system of 
differential equations); the initial values being arbitrary. Secondly, we shall admit 
arbitrary excitations II, ... , IN (the inhomogeneous system), while assuming zero 
initial values. The general solution can then be constructed by superposition of the 
solutions obtained for these two separate problems. 

1. The Normal Homogeneous System, for Arbitrary Initial Values 

In the general theory of differential equations, it is known and easy to verify that 
the solutions of the homogeneous system must be sums of exponential functions, 
possibily multiplied by powers. Thus we know a priori that the hypotheses of our 
method are satisfied, and the method will produce the correct solutions. We shall 
firstly treat a special case, specifying the initial values by the following equations, 
where k is some fixed integer, 1 ~ k ~ N: 

Y 1 (0+) = Y 2 (0+) = ... = Y'N to+) = 0 ; 

N N 

L a lv Y; (0+) = ... = L ak_lP Y: (0+) = 0, 
~=1 ~=l 

(5) IV 

L a kv Y: (0+) = 1 , 
~= 1 

N N 
L aHlP Y: (0+) = ... = LaN. Y: (0+) = O. 
~=l ~=l 

Although system (5) does not specify the y' ~(O+) explicitly, we could, oy (4), cal
culate these values uniquely, for we have an inhomogeneous system of equations 
with the non-zero determinant A. With these initial values we have, for (3), when 
setting F 1 = ... = F N = 0, the following expressions: 

(6) I :~~(~~. ~.1.~.·.·.: ~ .~~~~s.).~~. ~ ~ 
Pk1(s) YI + ... + PkN(S)YN = 1 

I ............................ . 
l PN1(S)Y1 + ... + PNN(S)Y N = o. 

For each fixed k = 1, ... , N we obtain a set of solutions Yb ... , Y N. To emphasize 
the dependency of these solutions upon the choice of k, we shall write, for the k'h 
set of solutions, Gk1, ... , GkN. The evaluation of these solutions follows simply by 
Cramer's rule: We designate the co-factor of pa ~(s) by L1 a ~ (s); it is the determinant 
of that submatrix of L1 (s), which is obtained by deletion of the (J..'h row and the 
r column, multiplied by (- 1)0:+[3. We then have: 

(7) Gkz(s) = Llli;;) (k=l,···,N; l=I,···,N). 
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The co-factor LI a ~ (s) is a polynomial in s of, at most, degree 2 (N - 1); thus, the 
degree of the numerator is always smaller than the degree of the denominator of (7) , 
and the Gkl is a Laplace transform; the original function gk Z (t) may be obtained by 
the method of partial fraction expansion: 

(8) LI iZ(S) 
giz(t} ~ Gkz{S) = LIW (k = 1, ... , N; 1= 1, ... , N). 

The N2 functions may be arranged in the pattern of a matrix; for any fixed k, 
they are solutions of the homogeneous system of equations; by (5), they satisfy the 
specifications: 

(9) gJ:Z(O) = 0 (k, 1 = 1, ... , N)., 

(10) 
N {O for i =1= k 

L ai. gk.(O} = 
• = 1 1 for i = k 

(i, k = 1,· ., N) • 

Now, we can develop the solution of the homogeneous system 'f equations for 
arbitrary initial values. Cramer's rule provides, for (3): 

N N 

Y,(s) = L Lllt})s). L {(aJ:v s + biP) y.(O+) + aJ;vy; (O+)} (I = 1, .. ,N). 
II_I .=1 

We have, by (8), 

and, by the Differentiation Theorem 9.1, because of (9), 

hence 
N N 

yz(t} = L y.(O+) I L {aJ:v g~,(t)+bkvgkz(t)} 
._1 11=1 

(11) 
N N 

+L y;(O+} LabgkZ(t) (l=I, .. ·,N) . 
• _1 11=1 

The functions (11) are solutions of the homogeneous case since the existence of the 
tl-transforms of theydt) is assured; using the relations (9) and (10), one can easily 
verify that they assume the specified initial values. 
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2. The Normal Inhomogeneous System with Vanishing Initial Values 

For vanishing initial values, we are left on the right hand sides of (3) with the 
functions Fl, ... , FN • TJlUs we have, by Cramer's rule,3 

N 
~ Ail(S) 

Y,(s) = &1 Lifs) F" (s) 

and consequently, because of (8), 

N 

(12) y,(t) = L g",(t). /k (t) (I = 1, ... , N). 
A-I 

We now demonstrate that these are correct solutions irrespective of the required 
hypothesis regarding the existence of the ~-transforms of the functions involved. 4 

We have, by Theorem 10.5, considering (9), 

(13) 

and 

(14) 

N 

yi(t)= L g~z(t)·I,,(t), 
A-I 

N 

yi'(t)= L {gii(t)·I,,(t)+g~z(O)/,,(t)}. 
II_I 

For simplicity sake, we presume continuous functions fk(t). Should some of 
these functions have points of jump, then at these points we would have to form 
the respective derivatives from the right and from the left, in a manner analogous 
to that of (15.30). The functions g", (t) are aggregates of exponential functions and 
powers; these are bounded in a neighbourhood of the origin; hence, by (12) and 
(13), all y, (0+) and all y;z (0+) vanish. Moreover, we have, by (12), (13), and (14), 

N N 

PH (:t)y,(t) = au L gi, (t) • /k(t) + ail L gi'(O) I,,(t) 
A-I A_I 

N 

+ bu L gl,z(t) ·I,,(t) 
A_I 

N 

+ Cil L g",(t) .I,,(t) 
A-l 

= £. {PU(dd )g "z(t)}. 1 ,,(t) 
A-I t 

N 

+ ail L giz(O) I,,(t), 
A-I 

8 Here, the determinant LI (s) assumes the role corresponding to that of the characteristic polynomial 
p (s) of a single differential equation. 

4 This verification is not superfluous. This fact will become c1ear during the discussion of the anomalous 
system, when we shaH discover that the solutions of the anomalous system ~eneraHy produce initial 
values (from the right) different from the specified ones. 
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for any fixed i = 1.2 •...• N. For any fixed k. the gkl(t) represent solutions of the 
homogeneous system. It follows that 

N 

~ Pu ( :1) g k I (t) = 0 (k = 1 •...• N) ; 

thus the first sum vanishes. Also. we have. by (10). 

for k =1= i 

for k = i. 

and we are left with: 

f:. p" ( :,) Yl (t) = Idt) (i = 1 •...• N) . '_1 
It follows that the Y, (t) do satisfy the inhomogeneous system. 

Having shown. by theoretical considerations. that the method of the ~-trans
formation produces the solution of a normal system of differential equations for 
specified initial values. we may make practical use of this technique in every 
specific case. without further concern. One should not. however. use the derived 
and presented formulae; instead one is advised to execute the several indicated 
steps. in this manner benefitting from simplifications that occur in practical pro
blems.5 

Advantages 01 the Method 01 the ~-Translormation 

1. Only one system of linear algebraic equations in N unknowns. that of the 
N image equations in the Yz(s). need be solved. 

2. When employing the classical method. one solves firstly the homogeneous 
system by proposing the solutions as exponential functions; the solution of the 
inhomogenous system is then obtained by the technique of variation of the con
stants. By contrast. the method of the ~-transformation produces the solution of 
the inhomogeneous system with vanishing initial values directly. and independently 
of the homogeneous system. 

3. The initial values are incorporated in the system of image equations; in this 
manner they are automatically considered. To this we compare the efforts ex
pended by the classical method: It firstly produces the general solution which must 

5 When solving practical problems, one encounters-normal systems less frequently than anomalous 
systems. A completely executed example of,a normal system of three differentiaJ equations with three 
unknown functions which represents a physical probJem can be found on p. 79 of the book cited in the 
footnote on p. 84. Also, compare the explicitly solved normal 'system in Chapter 21. 
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subsequently be adapted to the specific initial values, a process which necessitates 
the solution of another system of linear equations. In physics and in engineering, 
one encounters most offen problems with vanishing initial values; for this case, 
an appreciable simplification results when using the method of the ~-transforma
tion, no reduction of labour results for the classical method. 

4. An outstanding advantage of the method of the ~-transformation arises from 
its facility to evaluate any individual unknown function with no knowledge of all 
others. The classical method offers no such possibility for specified initial values. 
This is an important qualification. for one is, in fact, most often interested in but 
one particular unknown, while the others have importance only in the construction 
of the system of equations. 

20. The Anomalous System of Simultaneous Differential 
Equations, with Initial Conditions which can be fulfilled 

The normal system of N differential equations of order n has been characterized by 
the specification of a non-vanishing determinant of the matrix of the coefficients 
of the highest derivatives, the nih derivatives: det II c:P 1\ =1= o. 
As a consequence of this specification we observed the following three properties: 

1. When solving the image equations, we encountered the determinant LI (s) ; 
it is a polynomial in s of the highest possible degree nN. All its co-factors LI a Ii (s) are 
necessarily polynomials in s of lower degree, and the quotients 

G () _ L1kl(S) 
kl S - L1(s) 

are necessarily rational functions, the numerator polynomials of which have de
grees lower than that of the denominator polynomial. Thus, we had conventional 
functions gk I (t) in the original space. 

2. Contributions to the solutions due to the excitations are composed of products 
of the form: Gkl(S) Fk(S). Corresponding to these, in the original space, we have 
the convolutions gk 1 (t) * Ire (t) which are continuous functions irrespective of 
possible discontinuities of the input functions Ire (t). This indicates that the output 
functions do not repeat possible jumps of the excitations; such discontinuities are 
repeated only in the n'h derivatives of the output functions (compare (15.30)). 
Any physical system which is described by a normal system exhibits a smoothing 
character. 

3. In connection with Eqs. (19.11) and 19.12) we observed that each of the N 
derived solutions satisfies its n specified initial conditions. These initial conditions 
were incorporated in the image equations during tpe ~-transformation of the original 
equations, according to the Differentiation Theorem, as limits from the right; they 
are assumed by the original solutions in this sense. 
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We may summarize our observations: the solutions of a normal system behave 
exactly in the same manner as the solution of a single differential equation. Indeed, 
the latter always represents, when visualized as a system with N = 1, the nor
mal case, since the determinant of the matrix of the coefficients of the n'h deriv
atives degenerates to the one coefficient Cn 9= 0. 

The anomalous system is characterized by 

We anticipate the conclusions of the subsequent investigation of the anomalous 
system, and enumerate its characteristic properties which are quite different from 
those presented for the normal system. 

1. The determinant.d (s) is a polynomial in s of degree < nN. Consequently, it 
may happen that some co-factors.d a ~ (s) are polynomials in s of degrees equal to, 
or higher than, that of.d (s). Thus the corresponding rational functions Gkl (s) may 
have numerator polynomials of degrees equal to, or larger than, the degree of the 
denominator polynomial. Accordingly, in the original space we do not have con
ventional functions; instead, we encounter distributions. 

2. For the same reason, to the products Gkl (s) F k(S), there correspond not only 
convolutions of the excitations /k (t) with certain functions, but the functions fk (t) 
themselves and, possibly, also derivatives of these. If, as for the normal system, we 
admit continuous input functions with isolated points of discontinuity, then we 
are faced with another difficulty, since the output functions may fail to have the 
required derivatives in the classical sense which are needed to satisfy the differen
tial equations. 

3. In mathematics it is customary to require that the specified initial values be 
assumed as limits from the right. If we follow this convention, then we cannot 
arbitrarily specify the initial values; instead these initial values, together with the 
initial values of the excitations have to satisfy certain relations. When specifying 
initial values such that these relations are not satisfied, we have an initial value 
problem which has no solution in the mathematical sense. Should we nevertheless 
proceed, and produce solutions in the usual manner, using the specified initial val
ues, we would generate solutions which have limits from the right different from 
the ones specified. 

The fact that for physical problems, in general, arbitrary initial values are given 
which need not comply with these relations, and that, nevertheless, a physical 
process ensues, that is, solutions do exist, forces us to review the concept of the 
initial value problem. A possibility of avoiding the inconsistencies is shown by the 
deliberations on p. 108: We need to include into our considerations the past, that 
is the time intervalt< 0, and interpret the initial values as limits as t -+ ° from 
the left. The limits from the left and the limits from the right need no longer agree 
at t = 0. Having thus solutions which are not differentiable at t = 0, we encounter 
another incentive to consider distributions, an interpretation which was already 
suggested by the difficulties observed in lemark 2' above. 

The classical method of solution lacks lucidity, for it requires the solution of the 
homogeneous system for the construction of the solution of the inhomogeneous 
system; it is for this reason that no attention was formerly given to the facts that 



20. The Anomalous System with Initial Conditions which can be fulfilled 117 

are explained in the above remarks 1, 2, and 3. It was only the method the \3-trans
formation which made it possible to investigate these problems, for it permits the 
transformation of the transcendental differential equations into algebraic image 

quations. 
Before entering the detailed discussion of the anomalous system, a remark con

cerning the number 01 initial values is in order. We use the term "system of differen
tial equations of order n" to imply that the highest occuring derivatives are of order 
n. This by no means precludes the possibility that in some of the equations the 
highest derivatives of some of the unknown functions might have order less than n 
Should the n-th derivative of some function ydt) be missing from all equations, 
then we must, of course, specify fewer initial values for that function ya. In this 
case, the system is certainly anomalous, since all elements of the ~th column of the 
matrix II cnlJC{l11 are zero (compare p.109); hence, its determinant has value zero. 

First, we want to explain the background of the relations between the initial 
values, in the sense of limits from the right, which were mentioned in the above 
remark 3. Consider the matrix of the coefficients of the nth derivatives of an 
anomalous system of N differential equations of order n: II C1t (l! I. The determinant 
of this matrix is zero, hence the rank rn of this matrix is less than N. Therefore, one 
can completely eliminate the derivatives y,,(n) from (N - rn) equations and thus 
obtain rn equations which are truly of order n, that is, they contain, at least, one 
derivativey,,(n), while the remaining (N - rn) equations are, at most, of ordern - 1. 
Next, we inspect the matrix of the coefficients of the YI'(n-1) in these (N - rn) 
equations which has (N - rn) rows and N columns, and we determine from which 
of these equations the y,,(n-1) can be completely eliminated. In this manner, one 
obtains a group of r n -1 equations which are truly of order n - 1, while the remain
ing (N - rn - rn-1) equations are, at most, of order n - 2. Proceeding thus, one 
can reduce the given system of equations to an equivalent system of equations 
which is composed of rn equations of order n, rn-1 equations of order n - 1, "', 
and ro equations of order 0 which are ordinary, algebraic equations. 

We write one of the rn-1 equations of order n - 1, using for the coefficients and 
the excitation functions the same, unaltered symbols, to avoid the introduction 
of new symbols: 

[Cal y ( .. -1) + ... + Cal y' + Cal y ] + [co2 Y ( .. -1) + ... + Ca2 y' + Co2 y ] ,,-1 1 1 1 0 1 ,,-1 2 1 2 0 2 

+ ... =jo(t)· 

If the functionsY1, Y'1, "',Y1(n-1);Y2,y'2, "',Y2(n-1); .,. are to have limits as 
t -+ + 0, then 10 (t) must have a limit as t -+ + 0, and the following relation must 
be valid: 

+ ... = la(O+) . 

Each of the given rn-1 equations of order n -"1 will provide one such relation; 
we obtain rn -1 relations of the above type. 
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Next, we consider one of the rn-2 equations of order n - 2: 

The above considerations may be repeated and we obtain the rn-2 relations: 

+ ... = fa (0+) . 

The left hand side of (1) can be differentiated once and the derivatives thus formed 
are to have limits as t -+ + 0; hence I' a(t) must exist, and must have a limit as 
t -+ + O. In this manner we obtain rn-2 additional relations, of the form 

+ ... = f~(O+). 

Proceeding in this manner, we produce a total of 

rn- 1 + 2 rn_2 + ... + n ro 

relations which necessarily must be satisfied if solutions of the system are to exist 
which assume the specified initial values, in the sense of limits from the right. We 
call these relations the compatibility conditions of the anomalous system; initial 
values that comply with these compatibility conditions will be called attainable 
initial values. 

For the remainder of this Chapter we presume that the initial values exist as 
limits from the right, and that these comply with the compatibility conditions. We shall 
show that under these conditions the anomalous system has, in general, solutions 
which assume these initial values. That is, the compatibility conditions are not 
only necessary but also sufficient for the adoption of the specified initial values. 
The investigation of the anomalous system of N differential equations of order n 
would entail great difficulties with notation. Therefore, we shall present the method 
using as a model the system of two differential equations of first order in two 
unknown functions. In this manner we gain insight into the process of solution for 
a system of N equations of first order in N unknown functions. This model actually 
embraces the most general case, since any system of order n can be replaced by a 
system of first order. 

To substantiate this claim, we start with one equation of order n: 

Cny(n) + Cn_ly(n-l)+ •.. + C1Y'+ coy = I(t). 
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We define: 

(2) y' = '1/1, y" = '1/2, ... , y(n-l) = '1/n-1, 

and, with these, we -alter the differential equation into: 

(3) Cn'1/~-I+ Cn-1'1/n-1+··· + C1'1/1+ coy = I(t), 

together with the (n - 1) equations 

(4) y' = '1/1, '1/; = '1/2, ... ,'1/~-2 = 7]n-1. 

We have a system of 1 + (n -1) = n equations of the first order with the unknowns y, 7]1, 

•.. , 7]n-l instead of the one, given equation of order n. The n initial values of the unknown 
y: y (0), y' (0), ... , yIn -1) (0) become the initial values of the n new unknowns: y (0), '1/ItO), ... , 
7]n-l (0). 

For a system 01 N equations of order n with N unknown functions, we proceed similarly by 
defining a new function for each derivative up to the (n - 1)'" derivative of each function 
as shown in (2) for one function. With these substitutions, the N equations of order n are 
altered into N equations of the first order, similar to (3), together with (n - 1) equations for 
each of the N unknowns similar to (4), that is a total of N(n -1) equations. Thus, we obtain 
alltogether N + N(n -1) = Nn equations of the first order for Nn unknown functions. A 
rather involved calculation demonstrates that the determinant of the coefficients of the highest 
derivatives has the same value in the new system as it has in the old system; consequently, 
a normal system becomes a normal system, an anomalous system an anomalous one. 

(5) 

Consider the system 

I auy~ + bUYI + a12Y; + b12 Y2 = II (t) 

a21Y~ + b21Yl + a22Y; + b22 Y2 = 12 (t). 

We presume the existence of the limits of the excitations as t -+ + 0: IdO+), 
/2(0+), deferring further specifications concerning these functions. Let the system 
be anomalous, that is: 

(6) 

Initial values y~ and y~ of Yl and Y2 are given as limits as t -+ + 0: 

(7) Yl (0+) = y~ , Y2 (0+) = yg. 

Because of (6), we can eliminate y'l and y'2 from the Eqs. (5). In order that the 
Eqs. (5) represent a system of differential equations, at least one of the coef
ficients a j k must have a non-zero value; without loss of generality, let all =!= O. 
To accomplish the attempted elimination, multiply the first equation by a21 and 
the second equation by all, and then subtract the first from the second. With 

(8) 
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we can write the result compactly thus: 

(9) 

The compatibility condition is obtained from (9), by the limiting process t -+ + 0: 

(10) B y~ + C y~ = - a2l h (0+) + au 12 (0+) . 

If not only the determinant A but also the determinants B and C are each zero, 
then we must conclude that the coefficients of the second equation of (5) are fixed 
multiples of the coefficients of the first equation of (5). In this case, either the 
second equation is equivalent to the first if 12 too is the same fixed multiple of h, 
or else the equations would contradict one another. Hence, Band C cannot both, 
be zero. 

Suppose that B =1= 0 and.C =1= O. In this case we can arbitrarily select only one of 
the two initial values, y~ or y~, the other is then implicitely determined through 
(10). For the case that B = 0 and C =1= 0, we can arbitrarily select y~, while y~ is 
determined through (10). (In this case Y2 follows from (9) trivially without 
integration.) Similar considerations apply to the case: B =1= 0 and C = O. In any 
case, one can freely specify but one of the initial values, the other one is determined 
by this choice through the compatibility condition (10). 

We apply the ~-transformation to the system (5). When applying the Differen
tiation Theorem, we need the limits y!(O+) and Y2 (0+). We presume that we can 
use the specified values y~ and y~ for these limits, provided they comply with t4e 
compatibility condition (10). Thus we produce the image equations: 

(11) (au s + bu) Yl + (au s + bu) Ya = Fl (s) + allY~ + al2yg 
(a21 s + b21) Yl + (a22s + b22) Y2 = F2(S) + a21Y~ + a22yg. 

When calculating the determinant LI (s) of the system of algebraic equations (11), 
we find, for S2, the coefficient A = O. With equations (6) and (8) we introduced 
short notations for three determinants of the matrix of coefficients of (5); here, 
we introduce the remaining three determinants: 

(12) I bll bul = E, 
b21 b22 

Using the notation of (12), we find: 

(13) LI(s) = (C + D) s + E. 

The solution of (11) yields: 
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or, since A = 0: 

(14) 
.£I (s) YJ(s) = FJ(s) (a22 S + b22) - F2(S) (a12 S + b12) + c y~ + G y: 
.£I (s) Y2(S) = - Fl(S) (a2l S + b2l) + F2(S) (au s + bu) - B y~ + Dy:. 

For brevity we set 

We defer the special case H = 0 (compare the remark 1 at the end of this Chapter), 
and we presume here: 

H 9= 0, that is L1(s) is a linear function. 

By (14), we have: 

(15) Y (s) = F (s) aRaS + baB F ( ) aus + biB + C 0 + G 0 
1 1 H s + E - 2 S H s + E H s + E Yl H s + E Ya· 

The first term can be modified thus:1 

(16) F ( ) aaBs + baB = F ( ) (~ + K/H ) ·thK b E 
1 S H s + E 1 S H s + E/H ,WI = 22 - a22 H· 

The corresponding original function is: 

a;B It (t) + It (t) • : e-Et/H • 

The second term of (15) may be similarly modified. Altogether, for the original 
function of (15), we find: 

(17) 

with 

(18) 

Yl (t) = ~ It (t) + .!!.... It (t) • e-Et/H - ~ f2 (t)- .!:... f2 (t) • e-Et/H 
H H H H 

+ yO ..£. e-Et/H + yO !i.- e-Et/H 
1 H 2 H ' 

E 
L = b12 - a12 - • 

H 

Similarly, one finds: 2 

(19) Y2 (t) = - ~ It (t) - M It (t) • e-Et/H + ~ f2 (t) + .!!-. f2 (t) • e-Et/H 
H H H H 

- y~ ; e-Et/H + ygZ e-Et/H , 

I To the factor of F I (s), there corresponds a distribution for alB * O. The introduction of a distribution 
is avoided through the above modification. 

a One can verify that the functions (17) and (19) satisfy the relation (9). 
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with 

(20) 
E 

N = bn - an If . 

When comparing the solution of the normal system with the solution of the ano
malous system, one observes the new fact that in the solution of the anomalous 
system certainly at least one 0/ the excitations /1 and /2 occurs not only in the con
volution integrals but also as isolated term, since at least one of the coefficients 
an, a12, a21, a22 must have non-zero value. In order that, at some point, the func
tions Yl and Y2 strictly satisfy the differential equations (5), the functions /1 and/or 
12 must be differentiable at that point. We shall demonstrate that under this 
hypothesis, the functions (i7) and (19) do satisfy the differential equations. Later 
on, in Chapter 22, we shall show that when using the theory of distributions, we 
may omit the requirement of differentiability of the excitations. 

To verify the solution at some point, we form the derivatives of Yl and y., using Theorem 
10.5 for the differentiation of the convolutions (ft and I. are differentiable and therefore con
tinuous at the point t); for instance, 

d de [ft (t) • e-EtIH] 
E 

- If It (t) • e-EtIH + It (t) . 

We substitute the functions Yl, y't, y., y'. into the left hand side of the first differential 
equation of (5), and we collect the terms which contain the same expression as, for instance, 
ft, f't, I., .... In this manner WP. find: 

(21) 

+ (- auL - bUa12 + a12N + b12au) I. (t) 

+ (- aUa12 + a12aU) I~ (t) 

+ (auK (- !) + buK - a12M (- !) - b1.M) It(t) * a- EtiH 

+(-auL(- !)-buL+a12 N(- !) +b12N)t.(t)*e-EtIH 

+ (auc (- !) + buC - a12B (- !) - bl.B)y~e-EtIH 

+ (auG (- !) + buG + a12D (- !) + b12 D )yge-EtIH}. 

We need to show that this expression equals" (t), the right hand side of the differential equa
tion. We immediately see that the term with f'dt) and the term with f' 2 (t) vanish, since A = 0" 
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a fact which must be remembered in the sequel. Upon substitution of the values for K and M. 
the factor of h (t) becomes: 

! {all (bn-1Jt1 !) + buass- au (bBl-a21 !) - blaaB1} 

= ~I {(au baa - blaaSl + bllaaa - a18b21) H - (au alB - aUaSl) E} 
= ~a {(C+D)H+O'E} =1. 

Similarly. upon substitution of the values for Land N. the coefficient of h(t) becomes: 

! {- au (bu- ala !) - buau+ alB (bu- au !) + bllau} 

= ~a {(- allbll--alSbu+ alsbu+ aubu) H + (auall- auala):E}= O. 

The factor of h (t) * e-Bt/H is equal to 

~I { - au (baa - aaa !) E + bu (baa - aaa !) H + alB (bll - all !) E 

-bls(b81-aSl !)H} 
= ~s {- (au bas - aSlbu + buala - b21 all) E + (bubss - blSb81) H 

+ (aua28 - alSaal) ! E} 

= ~s {-(C+D)E+EH+O}= ~2(-HE+EH)=O. 

For the factor of y~e-Bt/H. we find. with C = H - D. 

~B {(- auH + ai1D + alsB) E + (buC - blIB)H} . 

The relations 

(22) auD + auB = buA = O. buC - bllB = auE 

can be verified by explicit expression of the determinants. and for the previous expression 
we obtain: 

1 
IF (- auHE + auEH) = O. 

By a similar process one can show that both the factor of 12 (I) * e-Bt/H and the factor of 
y:e-B1/H vanish. Indeed. in the sum (21). we are left with h(t). 

The fact that (17) and (19) satisfy the second differential equation of (5) can be established 
by steps similar to those above. Thus. we have verified that these functions are solutions. 
independent of the tacitly employed hypothesis that the given functions and the sought func
tions have ,2-transforms (compare the principle of extension. p. 74). 

We have yet to determine what initial values the functions Yl and Y2 assume 
in case the compatibility condition (10) is satisfied. We have, by (17), 

(23) H Yl (0+) = a22/1(0+) - a12 12 (0+) + y~ C + ygG. 
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The values y~ and y~ should satisfy the condition: 

(24) o = an h (0+) - allis (0+) + y~ B + y~ C. 

Forming all times Eq. (23) minus au times Eq. (24), we eliminate both 12 (0+) and 
11(0+), the latter since A = O. The remainder becomes, upon replacement of C 
byH -D, 

all H Yl (0+) = y~ (all H - au D - au B) + yg (all G - au C) . 

We now use (22) and the additional relation 

(25) au G - a12 C = - b12 A = 0, 

and we find: 

au H Yl (0+) = y~ all H. 

This shows that y1(O+) = y~, for we have supposed that H =1= 0 and we have 
assumed at the outset that au =1= O. 

Eq. (19) implies that 

(26) H ys (0+) = - a21 h (0+) + allis (0+) - y~ B + y~ D. 

Adding functions (26) and (24), one finds: 

H ys (0+) = y~ (C + D) = y~ H, 

that is, Y2 (0+) = y~. 

We summarize the conclusions: 

Theorem 20.1. II: 1. the system (5) 01 differential equations is anomalous, that 
is A = 0; 2. C + D =1= 0; 3. the excitations h (t) and 12 (t) have the respective limits 
h (0+) and 12 (0+) as t -+ + 0; 4. the specified initial values y~ and yg satisly the 
compatibility condition (10); then the lunctions (17) and (19) which are obtained 
by means 01 the ~-translormation satisly the system (5) at those points where h (t) 
and 12 (t) are differentiable; the lunctions (17) and (19) assume the specified initial 
values as limits as t -+ + 0, Irom the right. 

The system is satisfied for all t > 0, only if the excitations are differen
tiable for all t > 0; continuity of the excitations, which was sufficient in the normal 
case, does not suffice here. 

Remarks: 1. For the special case that H = C + D = 0 and E =1= 0, the image 
function Y1(s), by (15), has the form: 

Y I(s) = ~ {F I(s) (a2S s + bS2) - F 2 (s) (au s +bu) + C y~ + G yg}. 
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The corresponding original function is, in general, not a conventional function, and 
theory of distributions is needed for the treatment of this case (compare Chapter 
22). 

2. The determinant .d (s) of an anomalous system of N differential equations of 
order n is a polynomial of, at most, degree nN - '1; the cofactors .d a ~ (s) intro
duced in Chapter] 9 are polynomials in s having degree ~n (N -1). Consequently, 
numerous possibilities ought to be considered and discussed when treating the 
"general case". Hence, such a presentation is practically excluded. However, 
problems encountered in applications with numerically specified coefficients (most 
of which are usually zero) can be treated in a perspicuous manner, following the 
pattern set by the solution of the above example. 

21. The Normal System in the Space of Distributions 

In Chapter 20, we established the following conclusion: If, for some anomalous 
system of differential equations, one seeks the solution in the realm of classical 
analysis, then one must firstly request that certain hypotheses regarding the 
differentiability of the excitation functions are satisfied, and secondly recognize the 
fact that the initial conditions cannot arbitrarily be specified; instead these have 
to comply with certain compatibility conditions. However, when investigating 
problems in physics and in engineering one often encounters excitation functions 
of general nature, and arbitrary initial conditions. No doubt, physical processes 
exist for such situations and we are faced with the problem of devising a mathe
matical description of these. This is, indeed, possible by means of the theory of 
distributions. 

In order to present an elucidating transition to the new point of view, we 
employ the system (20.5) and begin the development with the solution of the normal 
case. 

Using the set of initial values (20.7), which may now be completely arbitrary, 
we find for the equations (20.5) the system of image equations (20.11). The deter
minant of the latter is, using the notation of Chapter 20, 

(1) .d (s) = A S2 + (C + D) s + E, 

whereby now A =1= 0, since the system is presumed to be normal. 
The solutions of the image equations are: 

(2) 

Yl(S)=_I_\ Fl(s)+ally~+a12yg a12 s + b12 I 
LI (5) F2 (s) + a21Y~ + a22yg a22 s + b22 

Y2(S) =_1_\ alls + bll Fl(s)+ally~+a12yg I 
LI (5) a21 s + b21 F; (s) + a21Y~ + a22yg 
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Recalling the notations of Chapter 19 we write: 

(3) 
_ a12s + bl2 = G (s) 

Ll (s) 21, 

aus + bu = G (s) 
Ll (s) 22, 

aS2s + b22 - G () 
Ll (s) - Us, 

_ a2lS + b21 _ G () 
Ll (s) - 12 S , 

and we obtain: 

(4) 

y 1 (s) = F1 (s) Gu (s) + F2 (s) G2t{s) + (auy~ + a12Y~) Gu (s) 
+ (a21 y~ + a22yg) G21 (s) 

y 2 (s) = F 1 (s) G12 (s) + F 2 (s) G22 (s) + (auy~ + a12yg) G12 (s) 
+ (a21Y~ + a22Y~) G22 (s). 

The degree of the polynomial L1 (s) is higher than the degrees of the polynomials 
in the numerators; it follows that, corresponding to the Gkt{s), one finds classical 
functions gkl (t) in the original space. Thus, for the functions (4), one finds in the 
original space: 

(5) 

Y1 (t) = It (t) * gu (t) + 12 (t) * g21 (t) + (auy~ + a12yg) gn (t) 
+ (a21Y~ + a22yg) g21 (t) 

Y2 (t) = It (t) • g12 (t) + 12 (t) * g22 (t) + (any~ + a12yg) g12 (t) 
+ (a21Y~ + a22Y~) g22 (t). 

The development of Chapter 19 indicates that (5) produces differentiable solutions 
of the system (20.5) having the initial values (20.7), provided the excitation func
tions It (t) and 12 (t) are continuous. In particular, for a homogeneous system, that 
is for It == /2 == 0, we have: 

Y1 (t) = gn (t), Y2 (t) = g12 (t), when auy~ + a12yg = 1, a21 y~ + a22yg = 0; 
yI(t) = g2t{t),Y2(t) = g22(t), when any~ + a12yg = 0, a21Y~ + a22yg = 1. 

We express this thus: The functions gkl, gk2 (k = 1,2) are solutions of the homo
genous system, that is 

(6) an g'; 1 + bu g kl + al2 g'; 2 + b12 g k2 = 0 

an g'; 1 + bn g kl + a22 g'; 2 + b22 g k 2 = 0 

For their initial values we have the equations: 

(k = 1,2). 

(7) { 0 for i =1= k 
ail gk I(O+) + aUgk2(0+) = 1 (i,k=1,2). 

for i = k 

From this, one finds the initial values: 

(8) gn (0+) = ~2 , g12 (0+) = - ~; , g21 (0+) = - ~2 , g22 (0+) = ~l • 
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We now investigate 

The Normal System in the Frame 01 the Distribution Theory. 

A distribution is defined over the entire. real line. To comply with the restriction 
imposed earlier, confining us to the interval 0 ;;::; t < 00, we have to restrict the 
discussion to those distributions which have their support in the right half-line. 
Moreover, we intend to employ the Laplace transformation, which necessitates the 
further restriction of the available distributions to those which have 52-transforms. 
In short, the given and the sought quantities must belong to the space .@'o (com
pare Chapter 12). A distribution does not have a value at some specified point; 
hence, it is not meaningful to specify initial values. One can speak of an initial 
value only for the special case when the distribution is, in fact, determined by a 
function. The derivatives must be replaced by distribution-derivatives. Therefore, 
we shall investigate the following system 01 distribution-derivative equations: 

(9) au D Yl + bUYl + al2 D Y2 + bl2Y2 = 11 
a2l D Yl + b2lYl + a22 D Y2 + b22Y2 = 12 

Yl. Y2, 11, 12 E.@~. 

(A =l= 0), 

Application of the 52-transformation yields, by Theorem 14.3, the image equations: 

(10) 
(au s + bu) Yl(s) + (a12 s + b12) Y 2(s) = Fl(S) 

(a21 s + b21) YI(s) + (a22 s + b22) Y2(S) = F2(S); 

these agree formally with (20.11), provided in the latter we set y~ = yg = o. 
Whence we find the solutions formally from (4), using the same conditions: 

(11) 
YI(s) = FI(s) Gl2(s) + F2(S) G2I{s) 
Y 2(s) = FI(s) G12(S) + F2(s) G22 (S). 

We have as originals for the Gk!(s) the above mentioned functionsgkz(t) which, 
however, are now visualized as distributions. Corresponding to (11) we have, by 
Theorem 14.5, the following originals from .@'o: 

(12) Yl = II * gu (t) + 12 * g21 (t) 
Y2 = II * g12 (t) + 12 * g22 (t) . 

For arbitrary distributions II and 12 from.@' 0, these are solutions of (9) which too 
belong to .@'o. 

It is interesting and revealing to investigate in what way the distributions (12) satisfy the 
distribution-derivative equations (9). According to Theorem 14.6, we find: 

DYI = It * (Dgll) + la * (Dgal). 

As a distribution of ~'o, gll is to be defined by zero for t < 0; hence, by (8), at t = 0, it has 
the jump: 
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gll has for t > 0 and for t < 0 a derivative in the classical sense, hence, by App. No. 20, 

Similarly, we find 

It follows that 

or, because of (14.8), 

(13) 

Using the same technique one derives: 

(14) 

Thus, for the left hand side of the first equation of the system (9), we find: 

{ , asa / / ' ala / } all It~gll+ A 1+ s*g21-A S 

+ bu { It * gll + /s * g21 } 

{ , aSl / / • all / } + au It *gu- A 1+ a*g22+ A 2 

+ b18 { It * g12 + /a * g2s } . 

The sums of the convolutions involving It and /. vanish according to (6); the factor of It is 
given by: 

1 A (auaBa - auaal) = 1, 

the factor of fa is zero. Thus, only It remains, and the first equation of (9) is verified. The same 
process is employed to verify the second equation of (9). 

Attention is called to the fact that Dyl, given by (13), and DY2, given by (14), 
have the same form as dYl/dt and dY2/dt in the classical case for continuous hand 
/2. which is shown by Theorem 10.5. Here, in contrast, we need no hypothesis 
regarding hand f2 other than that both belong to ~'o. 

For the special case that II "'" (J and that f2 "'" 0, we have Yl = gn (t) and 
Y2 = g12 (t), the functions interpreted as distributions; therefore, at t = 0, they 
have the respective jumps of heights gn (0+) and g12 (0+). The "weighting functions" 
guc(t), when considered as distributions, assume the role of "impulse responses" 
(compare (18.9)). 

Applying the result (12) to the special case for which II and /2, and consequently, 
also Yl and Y2 are function-distributions, that is locally integrable functions, and 
comparing the result with that obtained in the realm of classical functions, (5), 
one recognizes two facts: 

1. Upon replacing the concept of derivative by distribution-derivative, the 
solution (12), which agrees with the first part of solution (5), satisfies the system 
of equations irrespective of the restrictions that. II and f2 be continuous. The 
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suggested interpretation of the functions as distributions and the derivatives as 
distribution-derivatives offers the opportunity to admit non-continuous excitation 
functions which are often encountered in physical applications. We merely require 
that the excitations are locally integrable. 

2. The Eqs. (12) yield only those solutions of the system of differential equations 
which have zero initial values. In the discussion of one single differential equation 
towards the end of Chapter 18, we already presented the rational explanation of 
this characteristic. The initial values are not to be interpreted as limits from the 
right: yt{o+) , Y2 (0+), but instead as limits trom the left: yt{o-) , Y2 (0-), an inter
pretation which agrees well with physical intuition, for they are the result of the 
influences of the past. Functions, when considered as distributions, are defined 
on the entire real axis; therefore, the past is always incorporated. Functions which 
belong to the space P)' 0 are, by definition, zero for t < 0; hence, at t = 0, the 
limits from the left of these (and their derivatives) equal zero. Clearly, other initial 
values are excluded. 

We are faced with the facts: The replacement of functions by distributions 
from the space P)' 0, and the generalization of the derivative to the distribution
derivative is required if one wants to remove the restriction to continuous excita
tion functions. Yet this replacement precludes the consideration of functions with 
arbitrary initial values. 

Fortunately, the interpretation of the initial values as limits from the left 
actually provides the possibility of completing the intended generalization to also 
include solutions with arbitrary initial values. In the frame of the classical theory 
we presumed that! y has a derivative for t > 0, and a limit y (0+). Within the new 
theory, we consider y as a distribution in P)' 0 which is defined to be zero for t < 0, 
andy' is replaced by Dy. According to App. No. 20 we have: 

D y = y' + [y (0+) - y (0-)] 15 

=y' + y(o+) 15 since y (0-) = O. 

If we want y (0-) to have, instead of zero, some arbitrary value, then it is not 
sufficient to replace y' by Dy; instead, y' must be replaced by Dy - y (0-) 15, 
in order to obtain: Dy - Y (0-)15 = y' + [y (0+) - y (0-)] It The distribution a is 
zero (in the sense of App. N 0.10) for both t < 0 and t > 0; hence, except at t = 0, 
nothing has been altered, only the behaviour of an arbitrary y, at t = 0, is properly 
described from the point of view of the theory of distributions. 

The application of the ~-transformation now does not yield ~{Dy} = sY(s), 
instead one finds, by Eq. (13.1), 

~{Dy -y(O-)!5}=sY(s) -y(O-). 

When dealing with a differential equation of higher order, according to App. 
No. 20, we must not replace y(k) by Dky , but instead by the completed expression: 

D" y - y (0-) 15(1£-1) - y' (0-) 15(1£-2) - .. : - y(k-l) (0-) 15 

1 It suffices to study one solution; we shall call it y. 
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or by the expression 

(15) Dk Y - yo "(k-l) _ y~ ,,(k-2) _ ... _ y~k-l) ", 

since in our present interpretation y (0-), y' (0-), ... represent the specified initial 
values which we commonly designate by Yo, y' 0, •••• 

Applying the ~-transformation to (15), one obtains, by formula (13.2), 

(16) Sk Y (s) - yo sk-l - y~ sk-2 _ ... _ y~k-l), 

which is identical to the expression obtained by tke ~-transformation in tke classical 
sense. 

From the above argumentation it follows that to the special system (20.5) by 
the described completion one obtains formally the same image equations (20.11) 
containing the initial values, and the same solutions (5) as obtained in the space 
of functions. However, in the new interpretation, the excitation functions may be 
arbitrary, locally integrable functions, provided we interpret the solutions as distri
butions and, accordingly, form distribution-derivatives instead of derivatives. 

We want to verify that the solutions (5), when considered as distributions in !7Jj'o, satisfy 
the completed distribution-derivative equations, and that the specified initial values y~ a}ld y~, 
which have been introduced here as limits from the left at t = 0, are in fact also the limits 
from the right at t = O. This implies that, for the normal case, the "future" state (t > 0) joins 
the "past" state (t < 0) continuously at t = O. To begin with, the limits Yl (O+) and ya (O+) 
are the same as for the classical case, for the convolution integrals involving the excitations 
tend, for t -+ 0, towards zero, even for merely locally integrable It and fa, since the gtk{t) are 
bounded in a neighbourhood of t = O. The terms which depend upon the initial values tend, 
exactly as before, towards y~ and yg respectively, a fact which we want to retain for our sub
sequent considerations: 

Using the abbreviations 

(17) 

we can write 

(1S) 

The first distribution-derivative equation of the system (9) completed by d-terms can be 
written, using Yl (O-) = y~ and ya (O-) = "g, thus 

(19) 

For the solutions (5), when considered as distributions in !7Jj'o, because of 

with the abbreviations (17), we find the equations: 

DYI = D {It * g11 + la * gil} + Rl (gil (I) + g11 (0+) t5) + RI (g;. (I) + gil (O+) t5) 
DYI = D {It * gil + II * gla} + Rl (gil (t) + gil (O+) d) + Ra (g~1 (I) + gIl (O+) t5). 

For the purpose of verification we must substitute these expressions, and the representation 
(5) of Yl and ya into (19). In connection with fomlUlae (13) and (14), we have shown that 

a11D {It * g11 + 1s*'g21} + b11 {It * g11 + Is* gil} 
+ a11 D {II * gil + fa * gaB} + biB {II * gl, + la * gaB} = /1. 
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Therefore. we must only show that the following expression equals zero: 

au {Rl (gidt) + gu (0+) 6) + Ra (g;dt) + g81 (0+) 6) - y~ 6} 
+ bu {Rl gu (t) + Ra ga1(t)} 
+ all {Rl (gil (t) + gla (0+) 6) + Ra (g;2 (t) + gaa (0+) 6) - y~ 6} 
+ bla {Rl gll (t) + Ra gaz (t)} 
= Rdau gidt) + bu gu (t) + alB gia (t) + bll gll (t)} 
+ Ra {au g;dt) + bu g81 (t) + ala g;2 (t) + bla gaa (t)} 
+ au {Rl gu (0+) + Ra g81 (0+) - yn 6 
+ alB {Rl glB (0+) + Ra gaa (0+) - y;} 6. 
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Indeed. by (6). the first two lines of the last expression vanish. and. by (18). the last two also. 
The second completed distribution-derivative equation of the system (9) is treated simi

larly. 

Remark: One can trace the presented line of thought in the reverse order. In 
order to ascertain that the solutions found in the space of distributions in the case 
that they are functions assume arbitrary initial values, one must take care that the 
~-transform of the distribution-derivative Dky has the form (16). However, this 
implies that, earlier, Dky had to be replaced by the completed expression (15). It 
follows, by App. No. 20, that the y, y', ... have limits from the left, at t = 0, 
which are not equal to zero, as customary for functions from fl)' 0, but equal to 
yo,y'o, .... 

22. The Anomalous System with Arbitrary Initial Values, 
in the Space of Distributions 

When considering a normal system, the interpretation, within the frame of the 
theory of distributions, of the initial values as limits from the left does not conflict 
with the interpretation of these initial values as limits from the right, as interpreted 
within the frame of the classical theory, since the limits from the right of the 
discovered solutions agree with the specified initial values which are understood 
as the limits from the left. This observation might lead to the impression that 
ultimately the distinction between limits from the left and limits from the right 
is irrelevant. An entirely different situation is encountered when dealing with 
anomalous systems! For these, the interpretation of the initial values as limits 
from the left is of fundamental importance. Indeed, this interpretation alone 
enables us to mathematically describe numerous physical process~s which defy 
treatment within the frame of the classical theory. Here, the application of the 
theory of distributions is mandatory. 

We now consider the model system (20.5) in the ~pace of distributions, that 
is in the form (21.9), however here for the anomalous case, that is for 

A =0. 
Initial values are not specified for the present for we are dealing with distributions. 
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Application of the ~-transformation to (21.9) produces the image equations 
(21.10). The latter agree formally with (20.11), provided we set Y~ =Y~ = 0; 
hence the solutions of the latter, that is (20.14), for zero initial values are the 
solutions of the present problem: 

Y1 (s) = F (s) a22S + b22 _ F (s) a12S + b12 

1 Ll (s) 2 Ll (s) 

Y (s) = _ F ( ) a21 s + b21 + F ( ) all s + bu 
2 1 S Ll (s) 2 S Ll (s) , 

(1) 

whereby according to (20.13), using the notation of Chapter 20, 

(2) L1 (s) = (C + D) s + E = H s + E. 

First we shall consider the special case H =1= ° treated in Chapter 20, then the 
respective cases H = 0, E =1= ° and H = 0, E = 0. 

1. H =1= 0; that is,L1 (s) is a linear function 

For the construction of the originals of the functions (1), we can simply employ 
the expressions (20.17, 19), setting Y~ = Y~ = 0: 

(3) 
~h + ~h.rEt/H -~f2 - .!::-.f2. e-Et/H 
H H H H 

Y2 = - ~h - M h .rEt /H + ~f2 + ~f2. e-Et /H , 
H H H H 

whereby now hand f2 and, consequently, also Yl and Y2 are distributions in ~'o. 
If, in particular, h "'" 15, f2 "'" 0, and h "'" 0, f2 "'" 15, respectively, then one 

obtains the following pairs of "impulse responses": 

and 
~ 15 + ~ e-EtlH 
H H ' 

Yl = - ~ 15 - .!::-.e-EtIH 
H H ' 

Comparing these with the impulse responses of the normal systems (see p. 128), 
we discover here not only function-distributions but also impulses. 

When applying formulae (3) to the special case that hand f2 and, consequently, 
also Yl and Y2 designate function-distributions, that is locally integrable functions 
with limits as t ~ +0, we construct solutions which, formally, agree with (20.17, 
19), for zero initial values. However, for the present solutions we need not require 
hand f2 to be differentiable, provided we replace differentiation by distribution
differentiation. That is, for instance, jumps of the excitation functions are now 
permissible; such jumps will then recur in the solutions, since the excitations h 
and f2 themselves appear in these solutions. (In engineering one speaks of solutions 
or outputs capable of jumps). 

When the compatibility condition (20.10) is not satisfied, then the solutions 
have, in general, not zero initial values from the right. However, distributions in 
~'o are zero for t < 0; hence, the initial values from the left are, necessarily, zero. 
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Interpreting the specified initial values as limits from the left as done in the normal 
case, the functions (3) are the solutions which correspond to zero initial values. 
This interpretation enables us to speak of solutions also in the case that the com
patibility condition (20.10) is not satisfied and the solutions cannot, for t ..... 0 
from the right, tend towards zero. In this case, the limits of the solutions from the 
right and from the left are not equal at t = o. This situation can be reasonable 
explained from the physical point of view~ The limits yJ(O-) and Y2(0-) which 
are to be identified with the given state of the physical system at t = 0 are the 
result of the (unknown) excitations which acted upon the system before t = 0; 
the limitsY1«()+) and Y2 (0+), however, result from the excitations It und f2 which 
are effective after t = 0 and which need not be connected with the excitations 
which were effective before t = O. Thus, when also considering the past, one is 
able to provide meaningful mathematical descriptions of certain physical pro
cesses which pose an unsolvable problem from the classical point of view. 

To generate solutions having arbitrary initial values, we account for the be
haviour of these solutions at t = 0 in the very manner which we employed success
fully with the normal system: We complete the distribution-derivative equations 
by 6-terms; that is, we start with the following equations (compare p.129): 

(4) au (DY1 - y~ 6) + bu Yl + au (DY2 - y~ 6) + bu Y2 = 11 
a21 (DY1 - y~ 6) + b2l Y1 + a22 (DY2 - y~ 6) + b22 Y2 = f2 

rather than with the equations (21.9). Applying the ~-transformation to (4), one 
obtains the same image equations (20.11) and, therefore, also the same solutions 
(20.17,19) that were produced in the classical case,l whereby the initial values 
are now understood as limits from the left which are not subject to compatibility 
conditions. Obviously, it follows that, in general, the limits from the right and the 
limits from the left (the specified initial values y~ and y~) need not agree. In fact, 
one finds: 

(5) 
Y1 (0+) = a;1 It (0+) - ~8 f2 «()+) + y~ Z + y~ Z 
Y2«()+) = - a;1 11(0+) + ~1 f2(0+) - y~ ! + ~ ~ . 

These values depend upon both the specified initial values and the behaviour of 
the excitation functions, 

Theorem 22.1. Suppose that 1. (20.5) designates an anomalous system, that is 
A = 0; 2. C + D = H ::j= 0; 3. the excitations are locally integrable functions which 
have limits as t· ..... +0. Then we conclude that the functions (20.17,19) satisfy the 
completed distribution-derivative equations (4). Arbitrary values may be specified for 
the initial values y~ and y~, provided we interpret these as limits from the left. In 
general, the limits from the right (5) do not agree with the specified initial values. 

1 Obviously, the verification follows the steps of pp. 122, 123. 
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Consequently, a physical system described by (20.5) which, at t = 0, is specified by 
y~ and y~, responds with jumps at the "inception" 0/ the excitations II and /2. 

The solution is formally obtained by the application of the \.!-transformation 
employing the classical rule regarding differentiation, using the specified initial 
values instead of the limits from the right. 

2. H = 0, E 9= 0; that is Ll (s) is a constant E 9= 0 

For this special case one derives the solutions of the image equations of 
the distribution-derivative equations from (20.14) by setting Ll (s) = E and y~ = 
= y~ = 0; thus, we find: 

1 
y 1 (s) = IF { F 1 (s) (a22 s + b22) - F 2 (s) (a12 s + bI2)} 

1 
Y 2 (s) = IF { - F 1 (s) (a21 s + b21) + F 2 (s) (au s + bu )}. 

(6) 

Corresponding to (6) one finds in the original space: 

(7) 
Yl =' ! { a22 D II + b22 II - a12 D /2 - bI2 /2} 

1 
Y2 = IF { - a21 D II - b21 II + au D /2 + bu /2}' 

These solutions differ from the solutions of case 1 (H 9= 0) insofar that here the 
convolutions involving the excitations are absent, and also that besides the excita
tions at least one distribution-derivative 0/ the excitations occurs. This shows that 
even for the special case that II and /2 represent functions, the solutions may 
include true distributions. For instance, the function II = u (t - to) has the dis
tribution-derivative D II = () (t - to). For applications it is important that physical 
systems with the characteristics: A = 0, H = 0 may respond to jumps at the 
input with impulses at the output. 

As under 1, we want to specify arbitrary initial values (limits from the left) 
and, for this purpose, we start with the completed distribution-derivative equa
tions (4); for this situation we must, according to (20.14), add to the above shown 
\3-transforms (6) the respective terms: 

(8) 

and, correspondingly, we add to the solutions (7) the respective terms: 

(9) 

The solutions include impulses which result from the mismatch at t = 0 of the 
respective limits from the left and from the right. 

It is not difficult to verify that the solutions (7) completed by the respective 
terms (9) satisfy the relation (20.9), thus establishing them as solutions. 
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As before we want to investigate how the solutions satisfy the completed distribution
derivative equations (4). although the solutions derived here have an entirely different struc
ture than the ones derived for H oj. O. We form the left hand side of the first equation of (4) 
using the solutions (7) plus (9). Upon collecting terms with identical distributions. one obtains. 
when disregarding the factor l/E. the coefficients of the several distributions: 

DI/!: autJu - aUa81 = A = O. 
D/!: au biB + buaal- allbll- bllaal= G + D = H = O. 
Ii: bllbH- bllbu= E, 
DIll: - au all + all all = O. 
DII: - allbll- bUall+ allbll+ bllau= O. 
la: - bub18 + bllbu = O. 
!7': (auG - allB) yf + (au G + allD) y: = - (auD + alaB) yf + (auG - allG) y~ 

= buAyt - blaAy: = 0 by (20.22. 25). 

Summation of these terms and subsequent division by E yields /1. The impulse {) has the factor: 

Eq. (20.20) implies that buG - buD = auE; explicit representation of the determinants 
yields: 

(10) 

It follows that the factor of {) is zero. The second equation of (4) can be verified in a similar 
manner. 

Theorem 22.2. Suppose that 1. the system (20.5) is an anomalous system, that is 
A = 0; 2. C + D = H = 0; 3. E =F 0; 4. the excitation functions are locally inte
grable. Then we conclude that the distributions given by (7) plus (9) satisfy the com
pleted distribution-derivative equations (4). The initial values y~ and y~ must be 
interp'reted as limits from the left: yl(O-) and yz(O-). When existing, in general, the 
limits from the right differ from those from the left. 

3. H = 0, E = 0; that is,LJ (s) == 0 

For brevity we begin this investigation with the completed distribution-derivative 
equations (4). The corresponding image equations agree with (20.11). The deter
minant of this algebraic system is zero; hence we must distinguish between homo
geneous case and inhomogeneous case. 

1. Homogeneous System of Image Equations 

This situation is encountered if and only if 
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When It and /2 designate distributions,2 then it follows that: 

(11) 

For a homogeneous system of two linear equations with zero determinant of 
the matrix of coefficients, one may arbitrarily select one of the two unknowns; the 
other unknown is then determined. Instead of using this principle with the image 
equations and then returning the result to the original space, one may more 
quickly use it with the relation (20.9) of the originals. Because of It (0+) = /2 (0+) 
= 0 (~ is equal to zero for t > 0), we find: 

In connection with (20.10) we argued that Band C could not both be zero. Sup
pose that B =l= 0; then Y2 is any distribution of ~'o and 

G 
Y1= -IfY2. (12) 

For the purpose of verification, we form the left hand side of the first equation of (4): 

au (- ~ Dys - y~ lJ) - bu ~ ys + au (Dys - yglJ) + buys 

1 
= If {Dys(auB - auG) + YS(blSB - buG)} - (allYY + a12yg) lJ. 

Using G = -D in the first round bracket yields, by (20.22) and (11), 

1 
If {DysbllA - ysallE} + /1 = /1, 

since A = E = O. 
The left hand side of the second equation of (4) yields: 

aSl(- ~ DYS-YYlJ)-bsl ~ ys+asa(Dya-yglJ)+ba2 ys 

1 
= If {DY2(as2B - auG) + ys(b2aB - buG)} - (auy~ + aS2yg) lJ. 

Explicit representation ot the determinants shows that 

hence, with (11), 

asaB - aSlG = a2sB - auD = buA, 
b2SB - bale = - auE; 

Theorem 22.3. For the special situation in which A = C + D = E = 0 and in 

2 For the case that It and f2 represent functions, it-follows that Fl 0= F2 0= 0, hence It 0= f2.0= 0, and 
also 

Since A = 0, y~ is arbitrary and y~ = - al2 yg (from the beginning, we supposed that all '*' 0). 
all 
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which the excitations II and /2 are given by (11), we have infinitely many solutions 
01 the completed distribution-derivative equations (4): Y2 arbitrary and Yl = - (C / B) Y2, 
when B =1= 0; Yl arbitrary and Y2 = - (B/C)yl. lor the case that C =1= O. 

Remark: The case presented here may actually be encountered. If, for instance, 
the matrix of (4) has the form 

II ! 2 1 
3 1 

then A = 0, C = 1, D = -1, E = O. 

II. The Inhomogeneous System 01 Image Equations 

When the system (20.11) is inhomogeneous, and when LI (s) == 0, then we have, 
in general, incompatible equations. In order to have solutions, the right hand 
sides of (20.14) must be zero. This condition implies that: 

(13) 
Ft{s)(a22s + b22) - F2(s)(a12 s + blS) = -Cy~ - Gyg 

-Ft{s) (a21 s + b2l) + F2(S) (au s + bu) = By~ - Dyg. 

Upon inverse transformation into the original space we find there the compati-
bility conditions: . 

(14) aS2 D It + b221t - al2D 12 - bl2/2 = - (Cy~ + Gyg) ~ 
-a2lDIt - b211t + auDI2 + bu/s = (By~ - Dyg)~. 

These equations could have been derived immediately from the system (4). Because of 
E = 0, one can eliminate the quantities Yl and Y2 from the system (4); multiplication of the 
first equation by bSl and of the second equation by bu, and subsequent subtraction yields: 

or 
B (D)'l) - D(Dys} = bBl/l - buts + (Byt - Dyt) d. 

Using this equation together with equation (20.9) 3 which may be written 

BYl- Dys = - au/! + auts, 

since C = -D, one recognizes that, necessarily, 

This agrees with the second equation of (14); the first equation of (14) can be obtained in a 
similar manner. 

The compatibility conditions (14) indicate that the distribution-derivative 
equations (4) have solutions provided that the excitations satisfy a similar pair 

8 Initially (20.9) was obtained from (20.5) by the elimination of y'l and y's; it also follows from (4) by the 
elimination of DYl-y~6 and DYa-yg6. 
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of distribution-derivative equations, the right hand sides of which are determined 
by the initial values. 

For the determinants of the coefficient matrix of (14) employing the symbols 
used earlier, but stroked, one finds: 

The relation 

A'=j 
C' = j 

a22 -a12 j=A, E'=j b22 

- au an - b21 

a22 - b12 j , D' = j b22 

- a21 bn - b21 

C' + D' = C + D 

-bl2 j = E, 
bn 

-al2 j 

all 

can easily be verified. We also have A' = C' + D' = E' = 0, since A = C + 
+ D = E = O. Therefore, the system of equations for hand f2 is of the same 
type 3 as the system of equations for Yl and Y2. 

When the conditions (13) are satisfied, then (20.11) has infinitely many solu
tions; one may arbitrarily select one of the unknowns Yl or Y 2 ; the other one is 
then determined through one of the equations (20.11). Rather than performing 
these steps and then inversely transforming the result to the original space, we 
simply employ (20.9). One finds, for any arbitrarily selected Y2, 

(15) 

provided B =!= 0.4 

Theorem 22.4. For the special situation in which A = C + D = E = 0, and 
for arbitrary excitations and arbitrary initial values, the Eqs. (4) are, in general, in
compatible and, consequently, fail to have sohdions. If the compatibility conditions 
(14) are satisfied, then the equations can be solved, yielding an infinite manyfold of 
solutions. 

For physical problems which naturally require a unique solution, the situation 3 
is not encountered. 

4 C cannot be zero. Otherwise, since C = -A, we would have A = C = D = 0, and the coefficients of 
the second line of (20.5) would be proportional to the ones of the first line; compare the remark following 
(20.10). Therefore, to a different Y2 there corresponds a differeI\t Yl' 
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23. The Behaviour of the Laplace Transform near Infinity 

In Chapter 6 we demonstrated that every ~-transform F (s) represents an analytic 
function in a region of infinite extent, at least in a half-plane. In the sequel we 
shall frequently have to evaluate integrals involving F (s) along curves that tend 
towards infinity. Thus we need to know the behaviour of F (s) near infinity. 

In the subsequent Chapters, up to and including Chapter 28, we shall restrict 
our discussion to ~-transforms of functions, barring those of distributions. 

A ~-transform may be holomorphic at s = 00, like ~{u(t)} = l/s. In general, 
however, s = 00 is a singular point of F(s) like, for instance, of ~{u(t - a)} = 
= e-a8/s(a > 0). When approaching a singular point of a function along rays, 
one might observe that the behaviour of the function depends upon the chosen 
direction of approach: The limit may fail to exist; or, if limits do exist for different 
directions of approach, they may be unequal. The ~-transform F (s) is defined in 
a right half-plane, thus we need consider only those rays starting at some specified 
point So of the half-plane of convergence which aim towards infinity and which 
·form with the positive real axis an angle which is bounded by - n/2 and + n/2 
respectively: I arc (s - so) I ~ n/2. We shall show that along all rays that are not 
vertical, i.e. for larc(s - so) I < n/2, F(s) tends towards zero; indeed, F(s) con
verges uniformly towards zero in every fixed angular region: I arc (s - so) I ~ 
;5 1fJ < n/2. This is to be interpreted as follows: For every specified E > 0, how
ever small, one can find an R > 0 so that IF (s) I < E for all s with I arc (s - so) I ~ 
;51fJ < n/2, and Is - sol> R. We shall express this compactly thus: F(s) tends 

towards zero, when, in the angular region I arc(s - so) I ~ 1fJ < n/2, s tends two
dimensionally towards 00.1 

A similar property for vertical lines can be verified only in the half-plane of 
absolute convergence. Along vertical lines in the half-plane of convergence, we 
shall only produce an estimate for F (s). 

First we derive a theorem which is needed in the subsequent development. 

Theorem 23.1. II ~{I} = F(s) converges at the point so, then the integral ~{F} 
converges unilormly in every angular region I arc (s - so) I ~ 1fJ < n/2. 

Prool: We have, by (3.1), 

with 

o W 

f e-sl I (t) dt = e-(S-")'" cp (co) + (s - so) f e-(S-s.ll cp (t) dt, 

o ° I 

cp (t) = f e-S"~ t (T) dT. 
o 

1 When the independent variable varies in a plane, one needs, besides the concept of one-dimensional 
convergence (which can kinematically be visualized as a "walk along some path"), also the concept of 
two-dimensiollal cOllvergence (for which this kinematical visualization fails). The above presented defini
tion is for the case that the point 00 is the point towards which s two-dimensionally converges. The 
analogous definition for a finite point a of convergence is as follows: "F(s) tends towards A, when s 
tends two-dimensionally towards a" implies: For every givell e: > 0, one can find an r so that IF (s) - A I 
< e for all s with I a - s I < r. The corresponding definition for the case that s tends towards a in some 
specified angular region follows easily by appropriate amendment. 
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One easily verifies the equation 

W 

0= F(so) - e-{s-sOIWF(so) -(s -so) f e-(s-s.ll F (SO) dt; 
o 

adding it to the prior one, yields: 

(1) (1) 

f e-s' t(t)dt=F(so) + e-(s-solw [cp(w) -F(so)]+ (s -so) f e-(s-soll [cp(t) -F(so)]dt. 
o 0 

Consider two values WI and W2, with 0 < WI < W2, and find, forming the differ
ence, 

(1), f e- s/ I(t) dt = e -(s-solw'[Cp(W2) -F(so)] - e-(s-solw. [cp(W1) -F(so)] 

w. 

+ (s - So) f e-(s-soll [cp(t) -F(so)]dt. 

"'. 

We use the fact that limcp (t) = F (so); consequently, for every e: > 0 there exists 
an D such that I~ 00 

Icp(t) -F(so) 1< s for t> D. 

Selecting D < WI < W2, and ffis > ffiso, we find 

~ ~ ro f e- s' I(t)dt ~ 2c:+ Is-sol sf e-1Jl(s-so)ldt~2c:+ IS-Sol c:f e- 1Jl(s-sol'dt 
WI WI 0 

= s (2 + I 5 - So I ) 
ffi(5-50) , 

since I e- (s -Ij. I '" I < 1. In the angular region I arc (s - so) I ;£; 'IjJ < n/2, excepting 
the point So, we have: 

m(s - so) 
Is-sol =cos[arc(s-so)] E:; cos'IjJ, 

hence 
w, 

f e-s, 1 (t) dt ~ s (2 + _1_) . 
- costp , 

that is, it is arbitrarily small irrespective of the value of s. That means: ~{f} 
converges uniformly in the angular region, excepting the point So. Obviously, 
the conclusion is not affected, when So is included with the angular region. 
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Now we have the tool needed in the verification of 

Theorem 23.2. II 5;!{/} = F (s) converges at so, then F (s) tends towards zero, 
when, in the angula1:; region I arc (s - so) I ~ 'IjJ < 'J'C/2, s tends two-dimensionally 
towards 00. 

Prool: We partition F(s) in the following manner: 

Tl Ts co 

F(s) = f + f + f e-st I(t) dt, 
o T, T. 

and we choose, for a given e: > 0, firstly a sufficiently small number T 1, so that 

T, T, 

f e- st I (t) dt ~ f II (t) I dt <; for ffi s ~ 0, 
o 0 

and secondly a sufficiently large number T2 so that, by Theorem 23.1, 

'" f e- d I(t) dt <; for all s in the angular region; 
T. 

having thus fixed numbers T 1 and T 2, we select a suffiently large Xo > 0 so that 

T. T. 

f e-st I (t) dt ~ e-;t,T, f I I(t) I dt <; for ffis ~ Xo· 
T, T, 

Consequently, 

IF(s)1 < e for all s in the angular region, with ffis ;?> Xo. 

This is the conclusion of Theorem 23.2, since the manner of delineation of a neigh
bourhood of 00 in this angular region is irrelevant: either outside some specified 
circle, or to the right of some vertical line ; for we might consider the points with 
ffis ~ xo,which fall outside a specified circle. 

Supplement: The above Theorem 23.2 is valid lor every arbitrary point so· 

This conclusion is based upon the following geometric observation: Any angular 
region with arbitrary vertex So is, beyond a certain abscissa, completely contained 
in an angularregion which has a point of convergence as vertex and a slightly larger 
angle of opening. 

Theorem 23.2 is frequently used to demonstrate that some given function 
ca11not be a 5;!-transform of a function. We discovered in Chapter 2 that powers 
sa with negative exponent 01. represent 5;!-transforms. Theorem 23.2 shows clearly 
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that powers sa cannot be ~-transforms of functions if the exponent IX is zero or 
positive.2 Also the functions 

exp(- sa) with a ~ 1 

cannot be ~-transforms, although they do tend towards zero when the real-valued 
s tends towards 00. For IX = 1, we have established this conclusion on p. 25. Let 
IX> 1; define s = rei'll, and find: 

hence 

I exp(- sa) I = exp(- ra cos a cp) • 

Now, if we select a fixed cp, such that 

then 

1 n . (n n) --<m<Mm - -a2 T 2'a' 

~ < a cp < Min (a ~ ,n), hence cos a cp < 0 . 

Thus, along a ray from the origin which forms the angle cp < n/2 with the real axis, 
the function exp ( - sa) does not tend towards 0, in fact, it tends towards 00. 

For the investigation of the behaviour of F (s) = ~{t} along a vertical line, we 
need the Riemann-Lebesgue Lemma which is well known in the theory of Fourier 
series. The Riemann-Lebesgue Lemma concludes that the Fourier coefficients 

2,. 

an = ~ f I (t) COS n t dt , 
o 

2,. 

bra = ~ f 1 (t) sin n t dt 
o 

tend towards zero, for increasing n, provided 1 (t) is an absolutely integrable func
tion. More compactly, we can restate the conclusion thus: 

2 .. 

f e- i ,,' I(t) dt-O as n-co. 
o 

For our purpose we need to extend this Lemma to an arbitrary, finite interval (O,T), 
and to a continuously growing variable y instead of the discretely growing para
meter n. 

2 This is true for functions. Powers with non-negative exponents are, by (13.11), the 2-transforms of 
certain distributions. 
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Theorem 23.3 (Riemann-Lebesgue Lemma). I I I (t) is absolutely integrable in the 
interval (0, T), then 

tends towards zero, when y ~ ± 00. 

T 

f e-iy, I (t) dt 
o 

Prool: We may presume y > 0, and I(t) to be real-valued. One can find an n 
such that 

that is,n/y is n times contained in T. We partition the integral in the following 
manner: 

T ,,-1 (li+1)nl,. T f e-iy , t (t) dt = L f e-i ,., f (t) dt + f e-i ,., I (t) dt. 
o li-O linl,. "nly 

In the terms with odd k = 1, 3, 5, ... , we substitute t = u + (n/y): 

(k + 1) nl,. k n/y k nly 
f e-iY'/(t)dt= f e-iYU-i"t(u+;)du=- f e-iytt(t+;)dt, 

knly (k-l)nly (k-l)"/y 

and we join these with the corresponding terms with even k = 0, 2, 4, .... Setting 

2m= I n 
n-l 

for even n 

for odd n, 

we find (compare Fig. 10): 

n even o 11I 
Y 

n odd o 1lf. 
Y 

rl!.--y ! 

21£ 
Y 

Zlf 
Y 

Figure 10 

JlI 
Y 

n-1=2m 
I 
4!I 

Y 

n 
r 6-; 
S!!. T 
Y 

",-1 (2/+1)"/y nnly T 

(1) ~ f e- iyt [ I(t)-/(t+ ;)] dt + f e- iyt I(t)dt+ f e- iyt I(t)dt. 
1- 21"ly 2"'"ly nnly 
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This provides the estimation: 

T 

I e-i:y t I (t) dt 
o 

(2m-l)n/:y nn/:y T 

~ I I I (t) - I (t T ;) I dt + I I I (t) I dt + I It (t) I dt. 
o 2mn!:y nn!:y 

Consider the right hand side of this equation; the second integral has an interval 
of integration the length of which is either 0 or else n/y; the third integral has one 
of length T - (nn/y) = 15 < n/y. It follows that either integral tends towards 0, 
when y -+ co. We replace the upper limit of the first integral by T, thus increasing 
the value of the integral, defining I (t) = 0, for t > T, so that I (t + n/y) is defined 
in the entire interval: 

T 

I I I (t) - I (t + ~) I dt. 
o y 

This integral tends towards 0, when y -+ 00, that is when n/y -+ 0, by the Theorem 
cited in the footnote on p. 4~. This completes the proof. 

The above presented form of the lemma still is not suitable for our purposes; 
we extend it by the following two Theorems. 

Theorem 23.4. II I (t) is absolutely integrable in the interval (0, T), then the integral 
with variable upper limit 

tends, unilormly in 0 ;'£ t ;'£ T, towards zero, when y -+ ± 00. 

Prool: In the previous proof, we replace T by t. Hence, in (1), both numbers n 
and m depend upon t. For the first term, we use the integral 

T 

II I(T)-I (T+-;")\dT (f(T) =0 for T>T) 
o 

as a bound; this integral converges to 0, when y -+ co, independently of t. The 
second and third term, taken together, are, in absolute value, 

t 

~ I I I(T) I dT, 
t. 

where to = 2mn/y is a number which differs from t by, at most, 2n/y. 

Now, we use the fact that, in the close(! interval 0 ;'£ t ;'£ T, 

t 

fl/(T)ldT 
o 
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represents a continuous, and therefore uniformly continuous, function of t. Thus, 
for every z > 0 we can find an 'Yj so that for every pair of values to and t, with 
0< t - to < 'Yj, , 

f II (7:) I d7: < e. 
'0 

Hence, for all values of y with 2n/y < 'Yj, the second and the third term of (1) are 
together, in absolute value, smaller than z. It follows that these terms also tend, 
uniformly in t, towards O. 

Theorem 23.5. If f(t) is absolutely integrable in the interval (0, T), then 

T 

f e-i.y' e-'" f(t) dt 
o 

tends towards zero, when y ~ ± 00, uniformly for x ;;;: xo, where Xo is an arbitrary 
but fixed number. 

Proof: Integration by parts yields: 

hence 

T T T, 

f e-'" [e-'Y' 1(7:}] dt = e-"T f e- iYT 1(7:) d7: + x f e-:&' f e- iYT 1(7:) d7: , 
o 0 0 0 

T 

f e-:&' e-'Y' 1 (t) dt 
o 

T 

~ e-:&oT f e- iYT 1(7:) d7: 
o 

, T 

+ I x I . Max f e- iYT I(!) d7: . f e-:&' dt. 
O~t~T 0 0 

The first term of the right hand side tends, by Theorem 23.3, towards zero, when 
y ~ ± 00, independently of x. For the second term, we have 

T 

I x I I e-""dt = 11- e-"T I ~ 1 + e-"·T; 
o 

it follows, by Theorem 23.4, that this term also tends, uniformly in x, towards zero. 
Based upon these results, one easily obtains a Theorem concerning the behaviour 

of F (s) = ~{t} along a vertical ray, provided the ray is in the half-plane of absolute 
convergence. 

Theorem 23.6. If ~{f} = F(s) converges absolutely for s = Xo (real) and, con
sequently, for ffis ~ xo, then F(x + iy) tends, uniformly in x ~ xo, towards zero, 
when y ~ ± 00. 
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Proof: Let s = x + iy, and x ~ Xo. By hypothesis, for every given e> 0, 
one can find a T so that 

I {e-st f(t)dt I ~ {e- d I f(t) I dt ~ je-s• t I f(t) I dt< ; • 
T T T 

By Theorem 23.5, there exists a Y so that 

Hence, 

T 

f e-s' I(t) dt <; for jyl > Y, x ~ Xo· 
o 

I fe-,t I(t) dt 1< e for Iyl > Y, x ~ Xo· 

From Theorems 23.2 and 23.6, we derive 

Theorem 23.7. If ~{f} = F (s) converges absolutely for ffis ~ xo, then F (s) tends 
towards zero, when, in the half-plane ffis ~ Xo, s tends two-dimensionally towards 00. 

In particular, one can select sufficiently large values X and Y so that, for all s with 
ffis ~ X or respectively for all s with 13s I ~ Y, IF (s) I is arbitrarily small. 

Figure 11 
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When ~{t} = F (s) converges only conditionally in a half-plane, or in some strip, 
then we can use the Fundamental Theorem 3.4 to express F (s) by another, abso
lutely converging ~-integral, to which we may apply Theorem 23.6. 

Theorem 23.8. Let p designate the abscissa of convergence of ~{f} = F (s), then 
in every half-plane x £; p + e (e > 0, arbitrarily small), with s = x + iy: 

F(s) = o(y) as Iy I -+ 00, uniformly in x. 

In the case that p = - 00, the conclusion is true in every fixed right half-plane. 

Proof: For p = - 00, let So be any fixed real point; for finite p, use So = p + 
+ (e/2). By Theorem 23.2, in the angular region I arc (s - so) I ;£ nl6, indeed we 
haveF (s) = 0 (1). Thus, we must verify the conclusion only for the remainder ro of 
the half-plane x ~ p + e (x £ So + (e/2), in the case that p = - 00) shown in 
Fig. 11. For x > so, that is for x ~ p + e we have, by Theorem 3.4, 

... 
F (s) = (s - so) I e-(S-So)' 'P (t) dt ; 

o 

the integral converges absolutely, hence, by Theorem 23.6, 

j e-(s-so)t 'P (t) dt = 0(1) for Iy I -+ 00, uniformly in x ~ p + e. 
o 

In ro, it is true that 

1,,1 >' n 1 h I I 21 I Is - sol = SIll 6" = 2" ' ence s - so;;£ y. 

It follows that, in ro, F(s) = o (y), uniformly in x. 
The conclusion of this Theorem cannot be improved; this fact can be demon

strated by means of examples. 

Supplement. Since Iyl ;£ lsi, we certainly have: F(s) = o(s). 

The fact that F (s)/s tends towards zero, when s moves vertically up or down, 
plays an important role in many applications of the theory of functions to the ~
transformation. 
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24. The Complex Inversion Formula 
for the Absolutely Converging Laplace Transformation. 

The Fourier Transformation 

Hitherto, without exception, we determined the image function F(s) of some given 
original function I (t). Clearly, often one is faced with the inverse problem, that is to 
find the corresponding original function I(t) of some given function F(s), which is 
known to be a ~-transform. A large number of so-called "inversion formulae" is 
available which solve this problem, each being applicable under specific hypo
theses. For practical applications by far the most important is formula (1.10) 
which was mentioned early in the beginning of this book; it was then derived from 
formulae (1.5) and (1.6) which pertain to the Fourier integral, without explicit 
enumeration of the necessary hypotheses. We shall now present these. 

For this purpose, we shall use the symbols g and G instead of I and F for the 
functions, and x and y for the respective variables which are considered as real
valued. First we form with g (x) the function 

+'" 
(1) G(y) = f e-"" g(x) dx. 

The correspondence generated in this manner is the Fourier Transformation, for 
which we introduce the symbolic notation ~: 

G(y) = ~{g(x)}. 

The equation (1) has meaning, provided the integral converges at least for some 
values of y. Requiring that g(x) be absolutely integrable in the interval (- 00, 

+ (0), briefly! . 
+a> 

(2) f I g(x) I dx < 00 , 

is the simplest hypothesis which guarantees the existence of integral (1). This 
hypothesis is very restrictive indeed. However, it does offer the advantage that 
the corresponding ~{g} actually converges absolutely for all real y. Moreover, 
there is no other hypothesis which is equally simple and useful. Granted this 
hypothesis, we derive the following .properties for the ~-transform G (y). 

Theorem 24.1. II g(x) is absolutely integrable in (- 00, + (0), as shown in (2), 
then G(y) = ~{g(x)} is, in - 00 < y < 00, bounded, and unilormly continuous 
lor all y. 

+y 
1 The integrand is non-negative, hence S I g (x) I dx converges either to a finite number or, in the improper 

-y 

sense, towards + 00, when X -+ 00. When the integral converges in the proper sense, the limit is finite; 
this can be written in the form: the limit is < 00. 
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Prool: We have 

1 

+ <Xl 1 +00 
IG (y) 1= J..,e-tyZ g(x) dx ;;;; J.., Ig (x) I dx; 

hence, G (y) is bounded in - 00 < y < 00. Furthermore, 

Since e-t"z - 1 = (cos ~x -1) - i sin ~x, 

Ie-MZ -112 = (cos ~x _1)2 + sin2 ~x= 2 (1 -cos ~x) = 4 sin2 ~ , 

it follows that + <Xl 

IG(y+~) -G(Y)I ~2 f I sin "; Ilg(x)ldX 
-<Xl 

"2(1 +1) Ig(·) I dx+ 1 b. ";xf II g(.) Ilx 

~ 2 (I + J) I g(x) I dx + I ~ I X J) g (x) I dx. 

For a given e: > 0 one can find, by (2), a sufficiently large X so that 

Using this fixed value X, we obtain for all sufficiently small values 15 

hence 

x 
I ~ I'X fig (x) I dx < ; , 

-;X 

I G(y+~) -G (y) 1< e. 

Thus, G (y) is continuous for - 00 < y < 00, indeed uniformly continuous, since y 
did not enter the evaluation. 

Our aim now is to determine if and when g(x) may be recovered from G(y), 
using the formula 

+co 

(3) 1 f . g(x) = ~ eUYG(y)dy 
-co 

either for all values of x or, at least, for certain values of x. 
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The integral 
+a> 

G (y) = f e-iY~ -g.(~) d~ 
-a> 

converges, uniformly for ally, because of (2). Thus, when integrating G(y) over the 
finite interval - Y ~ y ~ + Y, we may interchange the order of integration;2 
this is also permissible if we first multiply the integrand by the bounded function 
eixy, where x is an arbitrary, fixed number: 

+y +y +'" +a> +Y 

21n f eixYG(y)dy = 2~ f eixy dy f e-iy~ g(~) d~ = 21n f g(~) d~ f eiy(x-~) dy 
-y -Y -a> -a>-Y 

Let b be some fixed number so that 0 < ~ < 1, and X > I x I + 1 be some value 
the ultimate determination of which we must defer. With these, we partition the 
integral as follows (compare Fig. 12): 

+a> -x x-d x+cI x 

f=f+f+f+f+f=~+~+~+~+~ · 
-a> -00 -x x-d x+d X 

In the integrals II and 15 , we have I x - ~ I > 1, and I sin Y (x - ~) I ~ 1; hence, 
for all values of Y: 

-x a> 

I 11 I ~ fig (e) I d~ , I I 51 ~ fig (~) I d~ . 
-a> X 

J, - --,+1.o-------)2 ------.~,-JJ ---J • ........ , ~--J5 

- 6-6-[ I I I ! 

-x o x X 
~ 1--+--1 ___ 

Figure 12 

By (2) , for a given e:, we can choose the value X so large that, for all Y : 

(5) 

2 \Vhen integra ting a uniforml y converging series over a finite interval, we may interchange summation 
and integra tion. A similar rule applies when the series is replaceq by an integral over an infinite interval. 
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The interval of integration of the integral 

~+x 

12 = f sin Y u g(x;:U) du 
IJ 
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does not include the origin; hence g(x - u)ju is absolutely integrable in that inter
val. Thus, by the Riemann-Lebesgue Lemma (Theorem 23.3.), we conclude that 

12 -+ 0 and similarly 1, -+ 0 as Y ...... 00. 

Consequently, for all sufficiently large Y: 

(6) 

The remaining integral 

(7) 

is the well-known Dirichlet integral of the theory of Fourier series, where the follow
ing property is verified: When forming the Fourier series of a function g, which has 
period2n, then the partial sum converges at some fixed point x towards some 
limit l, if and only if the integral (7) has the limit 1 as Y ...... 00. The value of 15 
may be an arbitrarily small, fixed number. 

Thus, every hypothesis concerning the behaviour of g in the interval (x - 15, 
x + 15), which guarantees the convergence of the integral (7) towards a limit 1, 
serves simultaneously as a sufficient hypothesis for the convergence of the Fourier 
series at the point x, to the limit 1, which mayor may not coincide with the value 
g(x). Several such hypotheses are known in the theory of Fourier series. 

Here, we shall utilize these results. The criterion which Dirichlet himself has 
presented, and which is the simplest to formulate, is as follows: If g is monotonic in 
the interval (x - 15, x + ~), then the integral (7) converges towards3 

(8) 
1 = g(x+)+g(x-) 

2 

The same conclusion follows from the far more general hypothesis which merely 

3 For a monotonic function g, we have at every point x limits from the left and from the right respecti· 
vely: g(r) and g(x+); the value of g at the point can be any value between these limits: g(r) :s; g(x) 
;;; g(x+). -
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requires bounded variation4 of g. This results directly from the fact that every 
function of bounded variation may be presented as the difference of two monotonic 
functions. 

We summarize thus: If g has the property of bounded variation in an (arbi
trarily small) interval about the point x, and if the number 15, which so far has only 
been restricted by 0 < 15 < 1, is chosen sufficiently small so that (x - 15, x + d) 
is entirely in that interval; then la/n (compare (7)) tends towards the value (8), 
when Y -+ 00. Thus, for sufficiently large values of Y: 

(9) 

Combining (4), (5), (6), and (9), we obtain for all sufficiently large Y: 

+y 
1 f . g(X+) + g(.r) 2i" eUYG(y) dy - 2 < B. 

-y 

This implies that 

(10) 

Special attention is called to the fact that the left side of (10) cannot be written 
directly as 

+0) 

21;n f ehYG(y)dy; 
-0) 

for this integral is defined by: 

y. 

(11) lim 21;n f eisy G(y)dy, 
Yt-to-co, Yt -. + co Y t 

where Y 1 and Y 2 independently approach the respective limits - 00 and + 00. 

lt may well happen that (11) does not exist, while (10) does converge. For instance, 
for the odd function G(y) = y/(l + y2), with x = 0, we have, for all Y> 0: 

4 A function g is said to be of bounded variation in the interval (a,b), if for every finite sequence of inter
mediate points Xk: a = Xo < Xl < ... < X n -l < Xn = b, we find: 

.. 
~ !g(xv) -g(xv-l)! ;:;;;M, 

.=1 

where IvI represents some fixed number. The importance of this class of functions follows from the 
observation that the continuous functions which are of bounded variation on some finite interval define 
exactly those curves which have finite length on the finite interyal. 
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+y +y 

f ei%YG(y)dy= f 1~y2 dy=O; 
-y -y 

consequently, we have for the limit, as Y -+ 00, the value zero. 

However, 
o y. 

f 1 ~ y2 dy and f 1 ~ y2 dy 
Y, 0 

do not have limits as Yl -+ - 00, and Yz -+ + 00 respectively. 

Whenever 
+y 

lim f- .. dy 
y ..... "'-y 

exists, irrespective of the existence of 

y. 

li~ f- .. dy, 
Y1-+-CX), Y1-+ + COy! 

+= 
we say that Cauchy's Principal Value of J ... dy exists; it is designated by 

-00 

+'" 
V.P. f .. ·dy. 

We comprehend why formula (10) does not yield the value g(x) but, instead, 
the mean of the two limits of g at x, from the right and from the left respectively. 
For, if one would alter g at the point x, then G (y) which is an integral would remain 
unchanged. Hence, it cannot be possible to calculate a determined value g(x), by 
means of G (y); whereas, the mean value is determined by the behaviour of g in an 
entire (arbitrarily small) neighbourhood of x; it is this behaviour which does 
determine the G(y). 

When, however, g is continuous at x, then g(x+) = g(x-) = g(x), and formula 
(10) produces g(x). 

In general, the value of g at some point x is not important; therefore, one 
"normalizes" the function at those points x, where g (x+) and g (x-) exist, by means 
of the definition: 

thus possibly altering the value of the function at x. 
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We summarize as follows. 
+00 

Theorem 24.2. Let S Ig(x) I dx < 00; hence G(y) = 5{g} exists for all real y. At 
-00 

every point x, where g is of bounded variation in some (arbitrarily small) neighbour
hood of x, we have the inversion formula for the Fourier transformation: 

+CD 

(12) g(x+)+g(x-) = V P _1_ f bYG()d 
2 .• 2:71 e y y. 

-CD 

For normalized g, or at those points x where, moreover, g is continuous, formula (12) 
yields the value g(x). 

Example: g(x) == e-i:z;i is absolutely integrable in (- 00, + 00), hence 5{g} = 
= G (y) exists for all y; it is given by 

+CD CD 0 

G(y) = f e-i ),$ e-I$I dx = f e-iY$ e-$ dx + f e-iY$ e$ dx 
-CD 0 -CD 

co CD CD 

= f e- iY$ e-$ dx + f eiY$ e-$ dx = 2 f e-$ cos y x dx. 
000 

The last integral is the ~-transform of cos xy, evaluated at s = 1, that is: 

The function e-i:z;i is of bounded variation in every finite interval; moreover, it is 
continuous everywhere. Thus, we may employ the inversion formula; it produces 
the result e-i:z;i for all x. The inversion integral converges in the ordinary sense, 
in fact absolutely; hence the V.P. may be omitted, and we find: 

+CD 

-Ixl -..!.. f by __ 1_ d 
e -:71 e yl+1 y. 

-co 

This last expression may be written as a 5-transform, that is, upon replacing 
x by - x, 

5 Obviously, a function of bounded variation need not be continuous. Conversely, a continuous function 
need not be of bounded variation, a fact that is demonstrated by the function 

r 0 for x = 0 

g(x) = 1 . 1 
XSlll-;- for x 9= 0, 

which is not of bounded variation on an interval which includes O. 
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Substituting the explicit expression of G (y) in formula (12) yields: 

+co +co 

g(x) = V.P. 21n f elsY dy f e-iYE g(E) dE 
-co -co 

+co +co 

= V.P. 21n f dy f eiY(~-E) g(E) dE. 
-co -CD 

This representation of a function by an iterated integral is known as the Fourier 
+00 

Integral Theorem. The hypotheses for its validity are: J Ig(x) I dx < 00; g is of 
- 00 

bounded variation in a neighbourhood of x; g is normalized in x. 
We may now derive an inversion formula for the ~-transformation under 

exactly specified hypotheses, using Theorem 24.2. In order to fully exploit the 
pOssibilities offered by the Theorem 24.2., we firstly generalize the ~-transforma
tion by extending the interval of integration of the ~-integral from the interval 
(0, 00) employed so far, to the entire real axis (- 00, + 00). We shall call the new 
transformation the "two-sided Laplace Transformation" and we shall represent 
it by the operator ~n: 

+co 

F (s) = f e-si I (t) dt os Bu {I}. 
-co 

The notation ~I will be used in place of ~ whenever we want to emphasize that the 
~-transformation in the earlier sense, the "one-sided Laplace Transformation" is 
meant. 

The ~-integral between 0 and + 00 converges, if at all, in a right half-plane; 
the ~-integral between - 00 and 0 converges in a left half-plane, as demonstrated 
by: 

o co co 

f e-" I(t) de = f esl f(-t) dt = f e-(-·)I f(-t)de. 
-co 0 0 

When both half-planes do have a strip in common, then this strip is the region of 
convergence of the ~n-integral. For instance, for f(t) == e-1zl, the first integral 
converges for 9ts > - 1, the second one for 9ts < + 1; hence the ~n-integral 
converges in the strip - 1 < 9ts < + 1. However, for f(t) == 1, the two integrals 
converge for 9ts > 0 and 9ts < 0 respectively; that is, we cannot find a strip 
common to both half-planes. 

The convergence of the ~n-integral at a single point does not enable us to deduce 
its behaviour at other points. However, when it is known that the ~II-integral con
verges at two points S1 and S2, with 9ts1 < 9ts2, then_convergence in the strip 
9tS1 < 9ts < 9ts2 follows; for the integral evaluated between 0 and + 00 con
verges for 9ts1 < 9ts, and the one evaluated between - 00 and 0 converges for 
9is < 9tS2. 
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More can be concluded in case of absolute convergence. When the ~n-integral 
converges absolutely at some point So, then, by Theorem 3.1, it converges abso
lutely on the entire line ms = mso. This observation is important for the subse
quent deductions. 

Let us consider the ~n-integral at the points s of a vertical line : 

s=x+iy, x=const, 

then 

+co 

(13) F(x + i y) = ilu {/}= f e-'y' [e- d I (t)] de = ~{e-%' I (t)}. 
-co 

On the line ms = x, the ~n{t} is the ~-transform of e-zt/(t). In order to apply 
Theorem 24.2. to this function, we require that 

+co 

f e-*' I I (t) I dt < co ; 
-co 

that is, that ~n{/} converges absolutely for s = x, and hence for ms = x, and 
that e-ztl(t) is of bounded variation in some neighbourhood of the fixed point t. 
For the latter request it suffices that I (t) is of bounded variation, for the product of 
two functions of bounded variation, I(t) andg(t), is of bounded variation. This is 
shown by the following development: 

I I (tv) g(tv) -I (tv-l) g(tv-dl 

= II (tv) g(tv) -I (tv) g(tv-l) + I (tv) g(tv-d -I (tv-l) g(tv-dl 

~ I/(tv) l'lg(tv) -g(tv-l) I + Ig(tIH) 1·1 I(tv) -I (tv-l) I· 

In the finite interval with the partition points t" we have 

for a function of bounded variation is necessarily bounded. Thus, it follows that 

" L I I (tv) g(tv) - I (tv-d g(tv-dl 
.=1 

" " 
~ Ml L 1 g(tv) - g(tv-l) 1 + M2 L 1 I(tv) -/(tv-l) I· .-1 ._1 

The sums of the right hand side are bounded, and so is the sum of the left hand side. 
Applying the inversion formula (12) to formula (13), one finds, for normalized I, 

+'" 
e-%' I (t) = V.P. _1_ f e"" F(x + iy) dy 

2n 
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+co 

I (t) = V.P. 21n f e*+'y) F(x + iy) dy, 
-co 

which can be written with s = x + iy as follows: 

z+sco 

f(t} = V.P. 2~i fe's F(s) ds. 
z-ico 
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This integral is to be evaluated along the line ffis = x = const, in the complex 
plane. 

We summarize: 

Theorem 24.3. Suppose tltat ~II{/} = F(s) converges absolutely lor s = x (real) 
a1td, consequently, lor ffis = x, that is 

+co 

f e-ZII/(t)ldt<oo. 
-co 

We conclude that the "Complex Inversion Formula" 

z+ico z+iY 

(14) /(1+) + /(1-) = V.P. _1_. f els F(s) ds = lim _1_. f e" F(s)ds 
2 2nz . y~", 2nz . 

%-.~ %-IY 

holds at every point t where I is 01 bounded variation in some neighbourhood 01 t. 
When I is continuous at t or normalized in t, then (14) yields the value I(t). 

The two-sided ~-transformation comprises also the one-sided ~-transformation, 
provided we define for the latter I (t),which is given only for t ~ O~by zero for t < 0; 
in this case, we have ~II{/} = ~I{t}. 

When ~I{/} convelges absolutely for s = Xo (real), then the same is true for 
all s = x ~: xo, indeed, for all s with ffis ~ Xo. Consequently, one can write the 
inversion formula with any x ~ Xo. Furthermore, observe that if the given I (t) is 
of bounded variation in an interval on the right of t = 0, then the for t < 0 by zero 
completed function is of bounded variation in an entire interval which contains 
t = O. We have 1(0-) = 0; therefore, at t = 0 the mean of the limits from the left 
and from the right equals 1(0+)/2. For t < 0, I(t) "'" 0 is eo ipso of bounded varia
tion, hence the inversion formula converges always and yields the value zero. This 
fact is not of immediate interest for the ~I-transformation, although it can, oc
casionally, be utilized. 

We are now in a position to formulate the Inversion Theorem of the ~I-trans
formation. 

Theorem 24.4 (Inversion Theorem). Suppose that ~I{/} = F (s) converges 
absolutely lor s = Xo (real) and, consequently, lor ffis ~. xo, that is 

co 

f e-z.' I I(t) I dt <00. 
o 
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We conclude that the "complex inversion formula" 

% + ieD 

(15) 1(1+) + I(r) 1 f 
2 = V .P . 2ni e's F(s) ds (x ~ xo) 

%-ico 

holds at all those points t > ° where f (t) is of bounded variation in some neighbour
hood of t. If f(t) is of bounded variation in an interval on the right of t = 0, then 

% +ico 

(16) 1(0+) 1 f 
-2- = V.P. 2ni F(s) ds (x ~ xo)· 

%-i Q) 

For all t < 0, we find 
z+ico 

(17) V.P. 2~i f e'SF(s)ds=O (x~xo) · 
X-teo 

We notice that every vertical line with the abscissa x ;;S Xo may be selected 
as the path of integration for the stated formulae, yielding identical values for the 
integrals, independently of the selected particular abscissa. An argumentation of 
the theory of functions leads directly to the same conclusion. This argumentation 
recurs frequently when working with the ~-transformation; thus, we take this 
opportunity to demonstrate this argumentation. This also serves as the first 
example of the utility of the fact that F (s) is an analytic function. 

In the theory of functions, it is a common operation to replace the path of 
integration by another more convenient one with the same end points, invoking 

IY 

1 
III to 

I 
Xq X, 

I 

Figure 13 



24. The Complex Inversion Formula. The Fourier Transformation 159 

Cauchy's theorem. In the present case, the end points of the path of integration 
are removed towards infinity, a fact which necessitates a limiting process. 

Let Xl and X2 be two abscissae with Xo < Xl < X2, and let w be a positive num
ber. We construct the rectangle having the vertical sides: ms = Xl and ms = X2, 
and the horizontal sides: ~s = +w and Ss = -w, calling these four sides I, II, 
III, and IV, to which we assign the respective orientations as shown in Fig. 13. 
The functions etl and F(s} are analytic inside of and on the boundary of the rec
tangle. Hence, by Cauchy's theorem: 

(IS) f e"F(s}ds= f + f + f els F(s}ds. 
I II III IV 

On the horizontal side IV, we have 

for t ~ 0 

for t< 0; 

that is, letsl has an upper bound which does not depend upon the value of w. 
By Theorem 23.6, F(s} tends, uniformly in Xl ~ ms ~ X2, towards 0, when 
w -+ 00. The length of the path of integration along the upper side IV is, invari
antly, (X2 - Xl). Thus, the integral along the side IV converges towards zero, 
when w -+ 00. The same conclusion is valid for the integral along the lower hori
zontalline II. Hence we find from (IS): . 

lim f ets F(s)ds= lim fell F(s)ds, 
",_0> I "' ..... 0>111 

that is, 
%l+ico .1'.+10) 

v.P. f ets F(s)ds = v.P. f e" F(s)ds. 
Xl-IO) XI-leo 

Observe that the invariance with X of the integrals (15), (16), and (17) has 
been derived here only for X > Xo, not for X ~ Xo. This is due to the fact that the 
classical Cauchy theorem that we used in the argumentation requires that the 
integrand be analytic in the interior of the boundary as well as on the boundary. 
This hypothesis cannot be guaranteed along ms = Xo. A more modern version 
of Cauchy's theorem requires on the boundary merely (two-dimensional) con
tinuity of the function towards the interior. A theorem which we cannot verify 
here, enables us to conclude that the function F (s) is indeed two-dimensionally 
continuous towards the right on the line ms = Xo, provided ~{t} = F (s) con
verges absolutely at s = Xo. With this additional illformation, we may extend 
the conclusion of Theorem 24.4 to include X = Xo. 

-We shall employ Theorem 24.4 to derive a formula which is widely used in 
mathematics and theoretical physics. The transform ~{u}= ~{1} = l/s con-
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verges absolutely for ffis > O. Consequently, we may select any Xo > 0, and any 
abscissa x > 0 for the vertical line of integration. The function u (t) is of bounded 
variation in some neighbourhood of any point t, hence 

r 
for t> 0 

... +ioo 
1 etl 1 

(19) V.P. 2ni J -s- ds = 2" for t= 0 (x> 0). 
.1'-10) 

0 for t< 0 

With (19) we derived an analytic representation of the "discontinuous factor", 
a function which assumes the value one for positive arguments t, and the value 
zero for negative arguments t. 

Moreover, when employing considerations similar to those developed on p. 12 
00 

for Hsinulu)du, we can demonstrate that the V. P. may be omitted or t =1= 0, 
1 z+i.:>a :c 

since each of the integrals J and J converges. However, for t = 0 we must 
% :I:-ioo 

retain the V. P., because the integral 

does not exist, whereas the following limit does exist: 

... +iY +Y +Y 

lim _1_. f ~ = lim _1_ f -~ = lim 21_ f X.-+i,~ dy. 
23U S Y 2n x+ 'Y Y •• x-", y~Q) x-iY -+0) _}' -foCl)_y 

+y +y 
The real part of the integrand is an even function of y, hence f = 2 f ; the 

-y 0 
+y 

imaginary part of the integrand is an odd function of y, hence J = O. Thus, we 
conclude that - Y 

Y y/ ... 

li 1 f x d l' 1 f du li 1 Y 1 m - ---I Y = 1m - _.-. = m - arctg - = -. 
Y_oo:n; r+y Y-+oo:n; 1 +u Y-+CIO:n; x 2 o 0 

In (19) we must select x > O. The function lIs is not integrable at the origin, 
hence the imaginary axis ffis = 0 cannot be used as the line of integration. How
ever, if we replace the imaginary axis near the origin by a semicircle to the right 
of arbitrary radius ~, then we may, following the argumentation of p. 159, replace 
the path of integration, ffis = x > 0, by the indented contour of Fig. 14, which 
includes as straight line sections parts of the imaginary axis ffis = O. 
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When considering, in the sense of Chapter 1, the ~-transform F (s) = F (x + iy) 
as the spectral density of the function e-xt / (t), and when regarding the inversion 
formula in the form 

(20) 

+00 

e-zl /(t) = _1_ f eiyl F(x+ iy) dy 
2n 

as a representation of e-xt/(t) as a superposition of oscilla
tions, then, of course, this is possible only when the path of 
integration of the integral is a straight line, that is, when we 
can set s = x + iy with x = const. Whenever an indented 
contour is being used, the inversion formula cannot be 
brought into the form of formula (20). This means that, by 
(19), a spectral representation of the function e-xtu(t) can 
be developed, for x > 0; one cannot use (19) with the in
dented path of integration to construct a spectral represen
tation of u(t) itself. We call attention to this limitation which 
is often overlooked in technical investigations.6 

25. Deformation of the Path of Integration 
of the Complex Inversion Integral 

The ~-transform represents an analytic function. Thus we 
may, by Cauchy's theorem, alter the straight line path of 
integration of the complex inversion integral in a certain 
manner. The last example of Chapter 24 served to demon
strate such an alteration. For practical applications, one 
frequently employs the following modification: The verti
cal line is shifted to the left until the first singular point 
So of F (s) is met. Then, the vertical line is replaced near 
So by an arc of a circle to the right, at the same time in
clining the remaining straight sections towards the left as 

x 

Figure 14 

shown in Fig. 15. The newly created path of integration Ot--+---+---+-
offers favourable conditions of convergence for the inte
gral, for the factor et 8 converges, for t > 0, rapidly to
wards zero along the straight line sections biased towards 
the left; whereas this factor oscillates between finite limits 
along the vertical lines. 

Figure 15 

6 The function u (I) has a spectral density in the theory of distributions; however, the spectral density of 
u(l) ist not (l/s)x=o = l/iy, instead it is PF l/iy + n6(y). To demonstrate this, we would have to 
generalize the \J;-transformation to include distributions; this would be beyond the scope of this text. 
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Clearly, not every ~-transform F (s) permits this type of deformation of the 
path of integration (compare p. 245). However, by means of the following Theo
rem 25.1, we can show that such alterations are permissible in many cases. This 
Theorem has a wide range of application, for it does not require F (s) to be a 
~-transform, indeed, it does not even require F (s) to be analytic. 

Theorem 25.1. Consider some point so, a vertical line through so, and a sequence 
of semicircles ~n (n = 0, 1,2, ... ) to the left of the vertical line, with centre So and 
radii en which satisfy the conditions: eo < e1 < ... ~ 00. Suppose that, on these 
semicircles the function F (s) is integrable and bounded by bounds which converge 
towards zero, when n ~ 00: 

IF (s)j ~ (jn on ~n, (jn -'>- 0 as n ~ 00. 

Then we conclude that 

f eIsF(s)ds -'>- 0 with t> 0 as n ~ 00. 

(>" 

When, in particular, on every left semicircle ~Q having radius e and centre So 

then it follows that 

f e'$F(s) ds -'>- 0 with t > 0 as e ~ 00 . 

.\ll? 

This Theorem remains valid when, instead of the semicircles any portions of these2 

are used as paths of integration, and when IF (s) I ~ (jp ~ 0 is guaranteed on these 
portions. 

In the case that the semicircles are to the right of the vertical line through so, the 
above stated conclusions are true, under the same hypotheses, for t < O. 

Proof: Let s = So + a, then the integral on the right hand side of 

f e'$ F (s) ds = eh • f e'a F (so + a) da 
.\In 

is to be evaluated in the a-plane along the semicircle to the left ou the imaginary 
axis having radius en, and the centre at the origin. The sequence of integrals of 
the left hand side tends towards zero, provided the sequence of integrals of the 
right hand side does converge to zero. Therefore, it suffices to verify the Theo-

1 This means that in the left half-plane F (s) tends, uniformly with respect to arc (s - so), towards O. 

2 In the case that the arcs are in an angular region ",/2 < 'P ;::;; arc (s - so) ;::;; 2 n - 'P < 3,,/2, the 
Theorem is trivially true, since e" tends, uniformly with respect to arc (s - so), more strongly towards 
zero than the length of the arc grows towards 00. The strength of the Theorem lies in the fact that the 
semicircles join the vertical line 9is = 9iso, where e" does not tend towards zero. 
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rem for So = O. For this latter case we may write for ~n : s = enei .&, with :rcJ2 
~ 00 ~ 3:rcJ2, and we find, with ds = eniei'&dD-: 

9 .. /2 

(1) I f elf F(s)ds \ ~ ~n f e''lncos6 en dO. (00 = ; + (1) 
.on .. /2 

.. ../2 

= ~n en f e-''lnsinl/> d91 = 2 ~n en f e-tllnsinl/> d91' 
o 0 

In the entire interval 0 ~ 91 ~ :rcJ2, the curve y = sin 91 is above the secant 
y = (2J:rc) 91; consequently one has: 

. 2 f 0 " sm91~n91 or ~91~2; 

hence, 
.. /2 

l.o! eIsF(S)dS\~. 2 ~nen[ e-t,ln (2/"'l/> d91 

1-8-Clln • 
= 2 ~n '(2/,,) -+ 0 WIth t > 0 as . n -+ 00. 

The above verification is certainly true for a sequence of portions of the semi
circles. Following the outline of the above proof, one would find in the correspond
ing estimation of (1), for the sequence of fixed portions of the semicircles: :rc/2 ~ 
~ 001 ~ 00 ~ 002 ~ 3 :rc/2, the dominating sequence: 

6. 

~n f e'""cos6 en dO. ; 
6, 

the integrand being positive, this sequence itself is dominated by the sequence 
derived for the entire semicircles. 

When using a sequence of semicircles ~n to the right of the imaginary axis, 
with t < 0, we set s = - (1 and we find 

f eIsF(s)ds = - f e-tuF(-(1)da, 
On 

the integrals on the right hand side being evaluated over the corresponding se
quence of semicircles to the left of the imaginary axis, with - t > O. The earlier 
part of this proof establishes convergence toward zero, when n -+ 00. 

1. As a first application of Theorem 25.1, we shall present another verification 
of formula (24.19), for a path of integration that is indented towards the right 
at s = O. 

For t > 0, we complete the contour by the addition of a semicircle .Q to the 
left of the imaginary axis, having radius e, and the centre at the-origin (see Fig. 16). 



164 25. Deformation of the Path of Integration of the Complex Inversion Integral 

c 

We investigate the integral 

1 f Is 1 d -2. e - s, 
:7U s 

along the contour ABC D E F A. By Cauchy's formula, the value of this inte
gral will be the value of the analytic function et8 at s = 0, that is, 1. On the semi
circle -9 we find: 11/s I = 1/f! -+ 0, when f! -+ 00; thus, by Theorem 25.1, the inte
gral along -9 tends towards zero, when f! -+ 00. Consequently, the remainder is 

1· 1 I e'S ~ ds = 1 1m 2--
Q-+a> , •• ABCDE S 

for t> 0. 

For t < 0, we complete the contour by the addition of a semicircle to the right 
(see Fig. 17). In this case, the function et8 (1/s) is analytic inside the closed con
tour, and the value of the integral is zero. By Theorem 25.1, the integral along -9 
vanishes in the limit, when f! -+ 00, and we are left with: 

lim 2~i f 
Q-+a> ABCDE 

els ~ ds = 0 
S 

for t < 0. 

For t = 0, we can immediately evaluate the integral. We set s = iy along the 
straight line portions, and s = b ei f/! on the semicircle; thus we find: 

-" + ,,/2 11 

f ~ ds = I -J.- i dy + f b-1e-i<p b i ei<pdrp + I-J.- idy 
S JY JY 

ABCDE -11 -,,/2 " 

11 +,,/2 Q 

= - f ~ dy + i f drp + I ~ dy = i ;r; , 

" -,,/2" 
hence 

2~i f ~ ds = ~ . 
ABCDE 
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It follows that the limit too is 1/2, when e -+ 00. The above evaluation clearly 
shows how the value 1/2 originates. 

2. The following example demonstrates the advantage of the earlier suggested 
replacement of the vertical line by an indented one with the rays biased towards 
the left. We begin with the correspondence 

{ 
,0-1 } 

.2 r(a) = s-o (a> 0) . 

For ffis > 0, the £-integral converges absolutely; the original function is of 
bounded variation and continuous, for t > O. Hence, we may use Theorem 24.3, 
and we find: 

(2) 

s+.<O 

V.P. 2~i I els s-o ds = 
for t > 0 

(a> 0, x>O). 
S-iCD for t < O. 

Similarly, as was done for the case oc = 1 (see p.160), we could replace the 
vertical line, with abscissa x, by an indented line, with abscissa 0. However, we 
advance beyond that, and we consider the contour shown in Fig. 18. The only 
singular point of et8 s-a, that is s = 0, is outside the contour; consequently, the 
value of the integral along the entire contour is zero. Next, we investigate the 
behaviour of the integral, for t > 0, along the several portions of the path of inte
gration when the radius w (see Fig. 18) tends towards 00. The function F (s) = s-a 
tends, uniformly with regard to arcs, towards zero, when I s I -+ 00. By Theorem 

8 iw A 

c 

x 

Figure 18 H -iw K 
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25.1, for t> 0, the integrals along the circular arcs Be and GH respectively 
also vanish, when w -+ 00. The integrals along the line elements A Band H K 
also vanish, when w -+ 00, since s-a converges uniformly towards zero, while the 
function et 8 is bounded, and the length of the line elements, invariably, equals x: 

",+i", 

lim f et's-ads+lim f e"s-ads=O. 
"'-'-eX> ",-io> "' ..... eX> CDEFG 

We invert the orientation of the curve e D E F G, and we let the points e and G 
each tend towards infinity, designating the limiting curve by ~. The angle "p 

(see Fig. 18) is in the interval n/2 < "p ~ n, hence ~ has the shape shown in 
Fig. 19: Fig. 19a) for "p < n, and Fig. 19b) for "p = n.3 The last equation indicates 

b) 

Figure 19 

that the integral along the vertical line at x has the same value as the integral 
which is obtained along the curve ~. Thus, we obtain, because of (2), 

(3) 1 f I. -a _ t a - 1 
2ni e s ds - r(a) for t> 0, a> 0. 

!lIl 

The presented argumentation is not valid for t < 0. 
When creating the curve ~ from the curve e D E F G by the limiting pro

cess: w -+ 00, both points, e and G, must simultaneously approach infinity; how
ever, the integral would also converge if each of the two points would independ
ently approach infinity. 

Thus, we.may replace, in formula (2), the vertical line by the angular, indented 
path ~, provided t > 0. This is very important indeed, for the integral (3) ob
viously converges for every complex value of IX. This, of course, does not in itself 
demonstrate the value of the integral as ta-1/r(IX). However, this may be shown 
in the following manner: For t = 1, the integral (3) is a function of IX only: 

(4) 2~i f e' s-a ds = G(a). 
!lIl 

3 For 'I' = n, the horizontal rays are located on the upper and on the lower border of the plane which has 
been cut along the negative real axis. 
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Using integration by parts, one finds for or; =F 1: 

G(a) = -21 . ~1 f eS s-a+1 ds = ~1 Gla - 1) . 
3H a- a-

!IS 

The function G (or;) satisfies the same functional equation as does 1/ F (or;), which is: 

1 1 1 
F(a) = a-1 F(a-1) . 

Moreover, for or; > 0, G (or;) agrees with l/F(or;); hence the two functions are iden
tical for all values of or;. 

For or; = 0, -1, -2, ... , we have F(or;) = 00, and l/F(or;) = G(or;) = 0; this ob
servation also follows directly from (4). For, if we construct a closed curve com
posed of a finite portion of m3, and a circular arc as shown in Fig. 20, then we 

find eSs- a to be analytic in the interior of the region bounded by this curve, for 
or; = 0, -1, - 2, . . .. It follows that the respective integral has the value zero. 
Letting the radius of the circular arc tend towards infinity then, obviously, the 
value of the integral along this arc vanishes, and we are left with the integral 
along m3, which is 0. 

Substituting in the formula derived above 

(5) 1 f a -a d 1 
2ni e (J (J = F(a) (or; arbitrary) 

!IS 

(J = ts, with t > 0, we find: 

_1_. f els t-a +1 S-a ds = _1_. 
2n, F(a) , 

this integral is evaluated along a curve which is generated from the curve m3 by 
a similarity transformation with the ratio l/t. The radius of the circular part of 
m3 is arbitrary; consequently, the new curve too is a curve of type m3. 

Thus, we finally obtain: 

1 f Is -a t a - 1 
(6) " 2ni e s ds = F(a) for t> 0, and or; complex. 

!IS 
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The right hand side is zero for IX = 0, -1, -2, .. .. 
Specifying t = 1 in formula (6) yields formula (5) which is called Hankel's 

Formula; it offers a particularly elegant method of defining the Gamma-function 
for all values of IX. We shall often use formula (6) in the sequel. 

3. We shall demonstrate the possibility of a further reduction of the path of 
integration with the following example. Starting with the correspondence for the 
Bessel function: 

1 
£ {Jo(t)} = v?"+l ' 

we conclude, by Theorem 24.4, that 

(7) 
%+i"" 

1 f eh 
V.P. -2 -. .~ ds = Jo(t) 

3U . v s"+l 
%-10) 

for t > 0 (x > 0). 

The function (s2 + 1)-1/2 tends, uniformly for all directions, towards zero, when 
s ~ 00; hence, by Theorem 25.1, we may replace the path of integration by the 
contour shown as heavy line in Fig. 21a), since the contribution to the value of 
the integral along the dashed part of the contour vanishes in the limit. The con
tour bypasses the two singular points ± i by circles. The function (S2 + 1)-1/2 
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Figure 21 

alters its sign whilst circling the point + i and the point - i respectively; hence 
is resumes its former sign after circling both points. Consequently, it has the same 
value on both rays from 0 to - 00, when the in Fig. 21a) separately shown rays 
merge with the negative real axis. However, the two rays are passed in opposite 
directions, and the contributions cancel one another. Thus, we are left with the path 
of integration shown in Fig. 21 b). Upon introduc~ng polar coordinates, one can 
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easily show that the contributions to the value of the integral along the circles 
about the points + i and - i respectively tend towards 0 for vanishing radii. 
Thus, we may employ the contour shown in Fig. 21c). As mentioned above, the 
function (S2 + 1)-1/2 does alter its sign when circling about + i, and about - i; 
thus, it assumes on the down-going line the negative of the value it attains on the 
up-going line, when the two separately drawn lines merge with the section of the 
imaginary axis. These lines are passed, during the integration, in opposite orien
tation; hence, instead of (7), we find: 

+i 
1 f e'· Jo(t) = -. .~ ds 

:7U vs.+l 
-I 

for t> 0, 

or, with s = iy, 
+1 

1 f /lit,. 
Jo(t) = n vt="Y' dy. 

-1 Y 

The left hand side, as well as the right hand side, are even functions of t; conse
quently, the presented formula is also valid for t < O. The same formula was 
derived on p. 57 in an entirely different manner. 

26. The Evaluation of the Complex Inversion Integral 
by Means of the Calculus of Residues 

The complex inversion formula, either with the original, straight line path of 
integration or with some other, deformed path, is itself neither suited for the 
immediate numerical evaluation of the sought original function nor qualified to 
provide the desired insight into the behaviour of this original function t(t). Never
theless, this formula has practical value, for it serves as the starting point for the 
development of other representations which are better qualified for the above 
mentioned purposes. 

When applying the ~-transformation, in particular when solving partial dif
ferential equations, one often encounters the situation that the analytic continua
tion of the image function F (s) is a meromorphic function; that is, it has only 
poles on the finite part of the complex plane, these poles being necessarily placed 
in a left half-plane. Whenever such conditions are encountered, one can use the 
method of residues to evaluate the inversion integral 

a+iw 

(1) t (t) = lim 2!' f ehF(s~ds. 
CD-+ co J. • 

a-1m 

A limit point of poles is a singular point, however not a pole. Hence,. the poles 
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of F (s) cannot have a finite limit point. Thus, we have, at most, countably many 
isolated poles: So, Sl, S2, ..•• We may order these by increasing absolute values1 

In the half-plane ffis ~ IX we draw curves [n which connect the points IX + iron 
and IX - iron, so that <In, together with the part of the line ffis = IX between these 
terminal points, encloses exactly the first n poles :so, Sl, S2, •.. , Sn, as shown in 

___ ...,a.iw. 

Figure 22 

Fig. 22. Let r •. (t) designate the residue of etBF(s) at Sv; then we find by means 
of Cauchy's residue theorem 

(2) 

a+iwn 

1 f 1 f n --. etBF(s)ds + --. etBF(s)ds = Y'r (t). 
2n~ 2n~ "-' v 

a-iwn ~n S'=aO 

In the sequel, we shall need two hypotheses: 
H 1. The curves [n are chosen so that ron -+ 00, when n -+ 00. 

Consequently, we have, by (1) , 

a+ icun 

lim 2~i fe's F(s)ds = t(t). 
n-+ co . a-.wn 

1 This principle of ordering is suggested here merely for the sake of definiteness. Other principles may 
prove useful in practical applications. 
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H2. F(s) has the property that 

lim f els F(s) ds = O. 
n_ ... Ci,. 

Then, we have, by (2), 

... 
(3) I (t) = L r,,(t) ; 

,,=0 

that is, I (t) is represented by an infinite series, a representation which is particu
larly well suited for numerical evaluation. For the attempted evaluation by (3), 
we need to e~press the residues r.(t) explicitly. The pole at the point s, is char
acterized by the principal part of the Laurent expansion about s.; for a pole s. 
of order m., the principal part has the form 

c.) aM 
_a_l_ + ... + m,. 
s-s" (s-s,)f!Ip . (4) 

In order to determine r.(t), we multiply (4) by etBj(2ni) and then integrate the 
expression along a small circle which is centred at s~. In this manner we obtain, 
when disregarding the coefficients a").. tV), a sum of terms of the form 

1 f e" -2. ( ')', ds (k = 1, ... , m.) . 
:Ila s-s" 

By Cauchy's formula for the derivative of an analytic function, this integral is 
equal to 

1 (_d_k_-1_ el ') = ...,-;-t_k_-l:-;-:- ets• 
(k-1)1 ds k - 1 0='" (k-1)1 • 

Combining these results, one finds: 

(5) ( t t m.-1 ) r (t) = aM + aCp) - + ... + a Cp) eSp' 
• 1 2 11 m" (mp -1)1 • 

The expression (5) is, in fact, the original function of the sum (4). Accordingly, 
one may visualize the representation (3) of I(t) as being generated by the following 
process: One writes formally the "partial fraction expansion" of F (s): 

... i") a (PI ) 
(6) F (s) ,..., L (_a_ + ... + m. m , 

.=0 S-Sp (s-s,) " 

which is composed of its principal parts exhibiting its poles with their multipli
cities; this expression is then returned to the original space, term by term. Ob
serve that this formal process is permissible only when the specified hypotheses 
H 1 and H2 are satisfied, and that the series (6) need not represent F (s); indeed, 
it may fail to converge. 
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Clearly, there are functions F(s) for which the hypotheses HI and H2 are 
satisfied; for instance, when F (s) is a rational function for which the series (6) 
has but a finite number of terms; in this case, (6) is the conventional partial frac
tion expansion of F (s) (compare p.76). Moreover, (6) may also converge for non
rational, meromorphic functions F (s) with infinitely many poles, and represent 
this function. For instance, we know that 

(7) 

However, this is by no means decisive for the validity of the representation (3) of 
the original function f (t); the essential requirement is the verification of the hypo
theses HI and H 2. 

This fact is emphasized here, for one frequently encounters, particularly in the 
technical literature, the application of the following, illegitimate procedure: The 
poles Sv of the meromorphic function F {s), and the corresponding coefficients a')., (v) 

are determined. Incidentally, this determination is particularly easy when F (s) is 
given in the form: 

F( ) = p(s) 
S q(s)' 

where both p (s) and q (s) are entire functions, which have no common zeros; and 
the poles of F (s), that is the zeros of q (s), are all simple poles. This is, for example, 
true for the function (7) with P(s) = coshVs, and q(s) = Vs sinhVs. In this case 
only coefficients a l (V) are encountered, which may be determined by: 

(.) _ l' p(s) ( ) _ r p(s) p(s.) 
at - 1m () s - s. - 1m ( ) () = q'(s.) . 

s-+s. q S s-+s. q S -q S. 

S-5" 

With these coefficients, F (s) is set equal to the expression (6); that is, in the case 
that only simple poles are encountered: 

0> a!') 0> p (s.) 1 
F(s) = Lo s-s. = Lo q'(s.) s-s.' ,,-= . ,,-

just as if F (s) were a rational function, which has merely a finite number of poles 
(compare (15.8)); finally, this representation is returned to the original space, 
term by term. That is, for the special case involving only simple poles: 

(8) t (t) = '£ ~(s.) eSp'. .-0 q (s,) 

The thus executed, termwise inverse transformation involves the interchange of 
two limiting processes: infinite summation and integration; this is not always 
permissible. Moreover, the representation (6) for F (s) is not correct in all cases; 
a fact that can easily be demonstrated by simple examples. For instance, an 
entirely possible, non-rational meromorphic function with a finite number of 
poles would, by (6), be identified with a rational function. The true facts are: 
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£he difference between F(s) and the series (6) does not have finite singular points; 
that is, it is an entire function which ought to be added to (6). This is true in 
general: although the infinite series (6) may converge, a behaviour which depends 
upon both the poles 57 and the coefficients a).(7), it may differ from F(s} by an 
entire function. The determination of the latter is particularly difficult, for it 
reflects the character of the singularity of F (5) at infinity. Consequently, any 
attempt to legalize the above described, naive process is a difficult task indeed. 
By contrast, the initially explained proper method avoids the question as to 
whether or not F (5) can be expanded into a series (6); instead, it constructs t (t) 
directly, using the residues. 

Naturally, the suggested method does not provide an infallable recipe. For, 
to begin with, the expansion (3) of t (t) need not exist; a fact that follows from the 
above discussion regarding the entire function that may be contained in F(s). 
Moreover, although the expansion may exist, it may be impossible to find, for 
F(s), the necessary family of curves <rn which satisfy the hypothesis H2; for the 
curves <rn must be located with proper consideration of the character of the func
tion F (5), so that the behaviour of the latter can be predicted along these curves. 
Usually one starts with circular arcs to the left, centred at the origin, which, for 
IX> 0, are to be extended in an appropriate manner to the line ffis = IX. For, if 
we can show that the maximum of IF (5) I on the circular arcs tends towards 0, 
when the radius grows, then the part of the integral evaluated along these semi
circles tends towards zero, by Theorem 25.1. Usually, it is not difficult to handle 
the integrals along the above mentioned extensions towards the line ~ 5 = IX. 

Occasionally, the use of rectangles, parabolas, and the like in place of the above 
suggested circular arcs proves fruitful. 

As an example, for which portions of circles suffice, consider the function2 

1 sinhxs } F(5) =--- (O;a x;a a 
~ ~as ' 

a function which may be encountered while solving hyperbolic boundary value 
problems by means of the ~-transformation. Here, we have to select IX > O. The 
numerator sinhx5 has a zero at 5 = 0; consequently, F(5) has a simple pole at 
s = O. Further simple poles of F (s) are the zeros of cosh as; these are: ± (2'/1 -1) 
(n/2a)i for '/I = 1,2, 3, .... We select circles centred at the origin having the radii 
ey = '/I (n/a) , so that exactly paired poles are located between successive circles; 
consequently, in the sum (3) we must combine in one term the respective residues 
of each pair of poles. To generate suitable curves <rn, we use the portions of these 
circles to the left of ffi5 = IX, as shown in Fig. 23; the finite number of circles 
which do not intersect the line ffi5 = IX may be disregarded. 

2 The function 
slnhss eSS_e- S$ ,-(a-s)'_,-CII+S)' 

COSii'ii$- ,a,+, as 1+, Sa. 

is bounded in every half-plane ms ~ x > O. It follows, by Theorem 28.3, that F(s) is all-transform 
which may be returned to the original space by means of the complex inversion formula. 
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Figure 23 
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For this particular example, we can demonstrate that the function 

( ) _ sinh x 5 (0 < < ) 
q; S - coshas = x = a 

is bounded on the entire circles about the origin having radii fl', and that the 
maximum of 1 F ( s) 1 on these circles tends towards 0, when fl. -+ 00. When using 
s = fl.ei{), we find for the numerator of F (s): 

sinh (x fl. ei8) = sinh (x fl. cos {} + i x fl. sin {}) 

= sinh (x fl. cos {}) cosh (i x fl. sin {}) + cosh (x fl. cos {}) sinh (i x fl. sin {}) 

= sinh (x fl. cos {}) cos (x fl. sin 0) + cosh (x fl. cos 0) i sin (x fl. sin {}) , 

and, therefore, 

21 sinh (x fl. ei8) 12 
= 2 sinh2 (x fl. cos {}) cos2 (x fl. sin 0) + 2 cosh2 (x fl. cos 0) sin2 (x fl. sin {}) 

= [cosh (2 x fl. cos {}) -1] cos2 (x fl ... sin D) 

+ [cosh (2 x fl. cos {}) + 1] sin2 (x fl. sin D) 

(9) = cosh (2 x fl. cos {}) - cos (2 x fl. sin {}) . 
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Similarly, for the denominator of F(s) we find: 

(10) 2 I cosh (a ev ei8) 12 = cosh (2 a e. cos -D) + cos (2 a e. sin-D) 

= cosh (2 v n cos -D) + cos (2 v n sin -D) = dp • 

A lower bound for the last expression is needed. Without loss of generality we may 
restrict the independent variable to the first quadrant, 0 ~ -D ;£ n12, since, ob
viously, identical values of d. are encountered in the other quadrants. We have 
cosh ~ 1, and -1 ;£ cos ~ 1. The expression (10) may approach the dangerous 
value zero only when both the cosh is approximately 1 and the cos is near - 1; for 
the former, we require -D to be near n12; however, near n12, cos (2nvsin-D) is positive, 
hence d. ~ cosh (2vncos-D). We can describe the situation more precisely: In the 
interval 0 ;£ -D ;£ n12, where 0 ;£ 2vnsin-D ;£ 2vn, we have cos (2vnsin-D) = 0 for 

that is, for 

2vnsin-D=!!.. ~ ....... (2.,-..!.) .... 2' 2 J~, , ' 2 J~ , 

'.<1. 1 3 
smv' = 4V' 4,. , 

411-1 
4,. 

Let -Do designate the -D of the last zero; it is given by 

4,.-1 VSII-1 sin -D = --- and cos -Do = ...!...,.::..:.---=-o 411 4,. 

Then, we have 

cos (2 v n sin -D) ~ 0 

and, in the same interval, 

d. ~ cosh (2 v n cos -D) . 

On the remainder of the first quadrant: 0 ;£ -D < -Do, we find 

~ cosh (2 v n cos -D) [1 - h (2 1 {} ) ] cos IIncos 0 

= cosh (2 v n cos -D) [1 - (n 1 ) 1 
cosh 2"VSV-1 J 

~ cosh (2 '/I n cos -D) [1 - ( ~ ) 1 
cosh 2"V7 

= C cosh (2'/1 n cos-D) for v ~ 1. 
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The last lower bound is also a lower bound on the interval Do :;; 0 :"iC n/2, because 
of C < 1; hence, it may serve as a lower bound on the entire quadrant: 0 ~ 0 ~ n/2. 

From (9) we conclude that: 

2 1 sinh (x e. ei /) 12 ;;i cosh (211 n : cos D), 
and, consequently, (x) 

cosh 2v:n.-cos{} 

I ( i/)) 12 < a < l... for 0 <_ ~ <_ 1. P e. e = Ccosh(2v:n.cos{}) = C - a -

We have thus discovered that 
1 

IF(s)l;;i CI?~ ~O, when n -+00, 

on the left semicircles of radii e •. It follows, by Theorem 25.1, that the contribution 
to the integral on these semicircles tends towards zero, when n -+ 00. 

F (s) tends, uniformly on the extensions of the semicircles to the line ffis = (x, 

towards 0; both the function et s and the lengths of these extensions are bounded. 
Thus, we conclude that the contribution to the integrals along these extensions 
tends towards zero, when n -+ 00. 

Thus, we have shown that the expansion (3) does indeed represent t (t) ; for the 
presented problem we have only simple poles, hence (8) may be used to evaluate 
(3). We find, for 11 ~ 1, 

P(s.) = sinhx(± (2v-l) 2: i)=±isin(2v-l): ;; 

q'(s) = 2 s cosh a s + S2 a sinh as, 

q'(s,) = ± 2(2 v-I) 2: i cosh a(± (2 v-I) 2: i) 

- (2 v - 1)2 4:2 a sinh a (± (2 v-I) 2: i) 

= =F 2(2 v-I) 2: cos (2 v-I) ; =F i(2 11 - 1)2 :: sin (2 v-I) ; 

= ± i(-I)' (2 v -1)2 :: . 

Combining both residues corresponding to the same v one finds: 

Sa (-1t . (2v-1):n.x (2v-1):n.1 
-;t (2v-1)2 sm 2a cos 2a 
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The residue at s = 0 is given by 
sinhxs 

lim __ s,--_ els = x . 
s_o coshas 

Hence, we find: 

8 CD (-1)· (2,,-1):u (2,,-1)nt 
I(t) = x + ,; .~ (2"-1)1 sin 2a cos 2a (0;:;; x;:;; a). 

This function has the period 4a in t. We should expect this, since F(s}, when 
extended by (e'u _e-aS}e-2as, yields : 

Comparing this last expression with formula (7.2), we conclude that I(t) has the 
period 4a, and that the 'finite ' ~-transform evaluated over the interval (0,4a) has 
the form: 4 .. 

f e-st I(t) dt = s~ HI - e-(tH*) - (1 - e-(tJ-*) 
o 

- (1 - e-(3tHzIS) + (1 _ e - (stJ-zlsH. 

This expression enables us to determine I(t) explicitly. To simplify the problem, 
we first consider a modified image function, replacing the factor 1/s2 by l/s. We 
use 

for 0 < t< a + x 

for a + x < t < 4a. 

, ·· · ········~i ------

.1) 

x 

i 
i 

I 
i 
i 

~o--~----~----~--~--~------~--~~--~-t 
.1+X 2.J .1.J;x J.1 J4.x ~~ 

I 
I 
I 

a 

I 

Figure 24 
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Proceeding similarly with the other terms, and superimposing the thus produced 
functions using the appropriate signs, we generate the original function of the 
modified image function for a fixed x (0 ~ x ~ a): 

t-Interval I (0, a-x) I (a-x, a+x) I(a+x, Sa-x) I (Sa-x, Sa+x)1 (Sa+x, 4a) 

Value of the 
Function 

o +1 o -1 o 

The original function of the modified image function is shown in Fig. 24; in Fig. 
24a) it is shown for some fixed x, in Fig. 24b) it is shown as a function of two 
independent variables, x and t. The image function actually investigated is ob
tained from the modified image function through multiplication by (l/s) ; accordingly, 
we need to integrate the original function of Fig. 24 between 0 and t in order to 
generate the actually sought original function. 

27. The Complex Inversion Formula 
for the Simply Converging Laplace Transformation 

The inversion formula of Theorem 24.4 is contingent on two restricting hypotheses: 
~{t} must have a half-plane of absolute convergence, and t must be of bounded 
variation near the point t where t(t) is to be evaluated. Using the Integration 
Theorem 8.1, we can develop an inversion formula which is not contingent on 
these two hypotheses. 

Whenever ~{t} = F(s) converges for a real s = Xo > 0, then by Theorem 8.1, 
~{!p},with , 

!p(t) = f f(-c) d-r:, 
o 

converges absolutely for ms > xo, and ~{!p} = F(s)/s. This conclusion is also true 
for Xo = 0, since for every s with ms > 0 we can insert anx'o, with 0 < x'o < ms, 
where ~{t} converges. Moreover, !p (t) is of bounded variation on every finite interval 
o ~ t ~ T; this fact is demonstrated by the following argumentation. Selecting 
any arbitrary partitioning 0 = to < It < ... < tn-l < tn = T, we find l : 

'. T .. .. 
L \ !p(lv) -!P(lv-l) \ = L ._1 ._1 ~ i f\ f(-c) \d-r:=flf(-c)ld-r:. 

• = 1 '._1 . 0 

1 Here we recognize two facts: Firstly, for theoretical-<:onsiderations, the condition of bounded varia
tion for Theorem 24.4 is far more practical than the original Dirichlet condition of monotonic behaviour. 
Secondly,the condition that I(t) must be ab$olutely integrable in every finite interval- (see p. 12) is, in 
fact, needed. 
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Also, !p(t) is continuous, and 11'(0+) = O. Applying Theorem 24.4 to 11' (t), we obtain 

Theorem 27.1. When ~{t} = F(s) converges (simply) lor some real s = %0 ~ 0, 
then we find, with % > %0 ~ 0: 

1 s+f·... F(s) { j I(T:) aT: lor t ~ 0 
(1) V.P. 2ni els-s-as = 0 

s-iQ) o lor t<O. 

The expression (1) is formally obtained from the previous inversion formula 
(24.15) by means of the follawing process: First we normalize I(t); that is, at every 
point where the graph of I(t) exhibits a jump, we specify: 

I(t) = /(I+) ~ 1(1-) , 

thereby not altering the value of the integral of I. Next, we define I (t) = 0, for 
t <: 0; with this latter modification we repeat the step that was taken when (24.14) 
was altered into (24.15). Finally, we integrate formula (24.15) not between the 
limits 0 and t but between - 00 and t, on the right hand side under the integral 
symbol, where now % = 9\s must be positive as specified, in fact, by Theorem 27.1, 
for only then 15 

-00 

observe that this integral would diverge for 9\s ;;i O. 
It is self-evident (compare p. 153) that the value of I(t) cannot be calculated 

from F(s) without further hypotheses. By contrast, the integral of I(t) can be 
evaluated without further restrictions. At every point of continuity, the function 
I(t) can be obtained by differentiation of 11' (t).2 In the Lebesgue theory, one con-

I 

eludes that J I(T:) aT: is differentiable almost everywhere, and that the derivative 
o 

is indeed equal to I (t) almost everywhere. 
Observe that the integral (1) must be evaluated along a vertical line with 

positive abscissa; this requirement must be satisfied although the half-plane of 
convergence of ~{/} may extend into the left half of the complex plane. Using 
argumentation similar to that employed on p.153 which is borrowed from the 
theory of functions, we can find what value the integral assumes, in the case that 
the integral is evaluated along a line with negative abscissa. 

2 Difierentiation of an integral with respect to the upper limit may also be permissible at points of 
discontinuity of the integrand, and it may correctly produce the value of the integrand. As an example 
consider the function: . 1 

J(t) = 1 for t = n (n = 1,2" •• ), I(tr= 0 elsewhere. 
, . 

We have J I(T)dT == 0 for all t, and consequently dldt J I(T)dT == 0; at the point t = 0, where I(t) is 
, 0 

discontinuous, difierentiation yields the correct value 1(0) = o. 
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Suppose that ~{t} converges for real s = Xo 
< 0 and, consequently, for all ffis > Xo. Let us 
select two abscissae Xl and X2 so that Xo < Xl 

< 0 < X2, and construct with these a rectangle 
as shown in Fig. 25. The function F (s)/s is ana
lytic inside of and on the rectangle with the ex
ception of the interior point s = O,where, in 
general, F (s)/s has a simple pole; only when 
F (0) = 0 is F (s)/s holomorphic at s = O. The 
integral 

1 f "F(s) d 
2ni e -5- s, 

evaluated along the boundary of the rectan
gle in the positive sense yields the residue of 

I 
w 

Xo 

N 

X, 0 

I 

II 

ets F (s)/s at 0; that is, F (0), when s = 0 is a Figure 25 

simple pole.3 The value of the integral is zero 
when the integrand is holomorphic at s = 0, that is when F (0) = O. In either case, 
the value of the integral is F (0), that is: 

In Theorem 23.8 we have shown that the function F (s)/s = F (x + iy)/(x + iy) 
tends, uniformly in Xl ~ X ~ X2, towards zero, when y ->- ± 00. Thus, we may 
recall the arguments of p. 159, and we conclude that the contribution to the value 
of the integral along the sides II and IV of the rectangle vanishes in the limit, when 
w ->- 00. The integral along the right vertical line III of the rectangle converges, 

I 

by Theorem 27.1, towards S f(-r:)dT for t ~ 0, and towards 0 for t < 0, for we have 
o 

Xz > O. It also follows that the integral along the left vertical line I of the rectangle 
has a limit. We have 

lim 
1 %'f-· ... Is F(s) I j I(T) dT 

2 . e -ds+ 0 n, 5 
%.+ .... o 

for t ~ 0 I = F(O). 

for t < 0 

Because of 
co 

F(O) = f 1(7:) d7: 
o 

3 Suppose that 'P(5) is analytic at 5 = 0; then 

'P(5) ,,(0) '1"(0) '1"'(0) 
-s- - -s- + -1-1- + -21- s + .... 

At s = 0, the residue of ,,(s)js is ,,(0), the coefficient of ljs of the expansion. 

x2 

11 
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we may rewrite the last expression thus: 

s.+ia> 
I· 1 f " F(s) ds Im--. e- = 

2n$ s 
CU .... CD %l-i. 

... 
- f f(-l:) aT for t ~ 0 , 

... 
- f f{T) fiT for t < O. 

o 

We summarize the above conclusions in 

Theorem 27.2. When ~{t} = F{s) converges (simply) for some real s = xo < 0, 
then we have, for Xo <x < 0, ... 

s+'''' 
- f f(T) aT for t ~ 0 

(2) V P _1_ f I, F (s) ds = 
. • 2ni e s ... 

s-'''' _ f I{T) fIT for t < o. 
o 

When defining once and for all f(t) = 0 for t < 0, then we may write in formula 
I ~ 

(1): If(T)dT, and in formula (2): -If(T)aTforallt ;0. 
o I 

Theorem 27.1 provides a new verification of the Uniqueness Theorem 5.1, since 
I 

F(s) == 0 yields f f(T)aT == 0 for t > O. 
o 

As an example which demonstrates the applicability of the above Theorems 
27.1 and 27.2, we develop conditions which will enable us to determine whether or 
not soine given image function F (s) is, in fact, a "finite" ~-transform. 

Theorem 27.3. The conditions 

a) F (s) is an entire function 

b) IF(x+iY)1 ~ C } 
forx~O 

c) IF(-x+iY)I~ Ceh 

are necessary ana sufficient for the fact that the original function f (t) of the ~-trans
form F(s) = F(x + iy) is a nullfunction for t > h ~ 0, that is, that 

, 
f I(T)dT= 0 for t>h. 
II 

Proof: 1. Necessity. When f(t) is a nullfundion for t> h, that is, when f(t) 
vanishes almost everywhere on t > h, then F(s) has-the form: 

11 

F (s) = f e-sl f (t) at. 
o 
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By Theorem 6.2, F (s) is an entire function. Moreover, 

" 
" 

f If (t) I dt = C for % !i:; 0 

I F (s) I ~ f e-1d If (t) I dt ~ 
o 

" o 
e-hz f I f (t) I dt = C e-hx for % ~ O. 

o 

2. Sufficiency. Suppose that F (s) = ~{f} converges (simply) for s = %0 ~ 0; 
then, by Theorem 27.1, we find, for t ~ 0, 

t l+iw 
(3) f f(r) dr = lim 2~i f e's F;S) ds (~> %0). 

o OJ~ co !-i CD 

We consider the contour of integration ([ shown in Fig. 26. It is composed of the 
portion of the vertical line between ~ - iw and ~ + iw, the left semicircle 1) centred 

t .iw -------....., 

l-iw 
Figure 26 

at the origin having radius ro, and the horizontal line sections that close the con
tour. The function et sF (s) is analytic inside of and on ([ for every w > 0; hence, 
by Cauchy's formula, 

(4) _1_. f et. F(s) ds = F(O). 
2,u 5 

" 
For the upper horizontal line segment, hypothesis b) guarantees that 

(5) 

iQ) 

f " F(s) d e - s 
5 

e+ia> 

l 

f h C C ete _1 :::; e - d% = - --- ~ 0 
- W ill t 

o 
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when ro -+ 00, for every fixed value t > O. The same conclusion follows for the lower 
line segment. On the left semicircle 1), we may set 

s = ro e'fJ, nJ2 ~ {} ~ S nJ2, dsJs = i d {}, 

hence, by hypothesis c), with {} = n/2 + q;, 

3~2 n 

If els F;S) ds I ~ f e~CllcosfJ C e-lIcucosfJ d{} = C f e-(t-lIlCIIsin'l' dqJ 
~ ~2 0 

n/2 

= 2 C f e-(I-lI) cusin'l' dq;. 
o 

The sine-curve is, in the interval 0 ;£ q; ~ n/2, above the straight line 2 q;/n; that 
is, in this interval, sinq; ~ 2q;/n. 
Thus, we have: 

n/2 

(6) If e'S Fs(S) ds I ~ 2 cf e-(I-hlw2 'l'/n dm = 2 C 1-r(I-IIla> 0 
., T (2/n) (t-h)w -7 

for t - h > 0, when ro -+ 00. From (5) and (6) we conclude, for t > h, that in the 
limit ro -+ 00 one is left in (4) with the integral along the vertical line, that is (3); 
consequently, we find that 

and therefore, 

hence, 

I 

f t(.)d.=F(O) for t>h, 
o 

I II 

lim f t(.) d. = f t(.) d. = F(O); 
1-+11+0 0 0 

I 

f t(·) d. = 0 for t> h. 
II 

Theorem 27.3 can be employed in physical applications to determine, by 
inspection of the image function, whether the corresponding original "signal" t (t) 
is "active" only during a finite time interval of duration h. 
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28. Sufficient Conditions for the Representability 
as a Laplace Transform of a Function 

00 

When asking what class of functions can be represented by a power series, L a.z·, 
.=0 

we obtain a simple answer: all those functions which are analytic on a circular disk 
centred at the origin. As an analogy to the above answer, one might expect. that 
the class of functions which can be represented as ~-transforms is composed of 
those functions which are analytic in right half-planes. However, merely a subset 
of all functions which are analytic in right half-planes constitutes, in fact, the class 
of functions which can be represented as ~-transforms. Our aim is to delineate this 
subset. While investigating this problem, we shall have to distinguish between 
functions that can be represented as ~-transforms of functions and those which can 
be represented as ~-transforms of distributions. For the subset of those functions 
which can be represented as ~-transforms of functions there exists no simple cri
terion in terms of the theory of analytic functions. Only sufficient conditions are 
known which describe merely a portion of the sought subset of representable func
tions. By contrast, the subset of functions which may be represented as ~-trans
forms of distributions is characterized by a necessary and sufficient condition which 
is taken from the theory of functions. In this Chapter 28, we deal with the repre
sent ability as ~-transforms of functions. 

For this purpose, we discuss a preliminary consideration. Any solution of the 
representation problem is complete only when it provides not only confirmation 
of the possibility of the representation F (s) = ~{t} but also instructions which 
enable us to find the original function f(t); that is, some inversion formula ~-l{F} = 

= f(t) must be provided. Previously, when dealing with the inversion problem, we 
aimed to determine those original functions f(t) whose image functions F = ~{f} 
can, by means of the inversion formula ~-l{F}, be returned to the initially con
sidered function f; that is, what conditions regarding f do guarantee the relation 

£-1 {£{f}} == f. 

By contrast, when investigating the representation problem, we seek to find those 
image functions F (s) for which the by means of the inversion formula ~-l{F} 
produced function f permits a representation of F as ~{t} ; that is, we are searching 
for the conditions regarding F which must be satisfied such that 

(1) £ {£-1 {F}} = F. 

This problem may be discussed in connection with any of the inversion formulae 
of the ~-transformation; thus, we shall here discuss the problem in connection with 
the complex inversion formula of Chapter 24, which is the only inversion formula 
presented in this book. It actually applies to the ~II-transformation, therefore, we 
shall firstly consider this. A ~II-transform is, necessarily, analytic in a strip 
Xl < ms < X2. Thus, we can restate our problem: 

What (sufficient) conditions must be satisfied by a function F (s), which is 
analytic in Xl < ms < X2, such that the formula 

+CI) ~+iCl) 

(2) f e-sl dt V. P. 2~i f e'aF (0') dO' = F (s) (Xl < m s < X2, Xl < X < Xs) 

-co Z-tco 
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is valid? As a first, obvious condition we require that the inner integral of (2) must 
be independent of x, for this integral ought to represent f(t). (Moreover, the right 
hand side of (2) is independent of x; hence, also the left hand side). Using Cauchy's 
theorem and the considerations of p.159, we realize that the above requirement 
is satisfied provided F (s) tends, uniformly in every narrower strip, towards zero, 
when ISsl ~ 00. 

Thus, since we are free to select x, we may choose x = ffis, hence: s = x + iy, 
Cf = x + i'YJ. With these new variables we find, for (2), the equation: 

+m +m 
F(x + i y) = f e-(..:HII)I dt V.P. 2\ f e'(..:H'I) F(x + i 'YJ) d'YJ 

+m +m 
(3) = 21n f e-''II de V.P. f eU'I F (x + i 'YJ) d'YJ. 

-m 

Formula (3) is, in fact, the Fourier theorem of p. 155 for F (x + iy) as a function 
of the variable y, for a fixed x; the only modification being that the symbol V.P. 
appears there before the outer integral symbol, while it is missing in front of the 
inner integral symbol. On p.155westated three sufficient conditions for its validity: 
Firstly, it must be true that 

+ a:> 

f IF(x + iy)l dy < 00 

-a:> 

(in the case that this condition is satisfied, the symbol V.P. before the inner integral 
is actually no longer required); secondly, for every fixed x, F (x + iy) must be of 
bounded variation in a neighbourhood of y; and thirdly, F (x + iy) must be nor
malized iny. The last two requirements are satisfied eo ipso by the analytic func
tion F for every y and for every x in the interval Xl < X < X2. l We conclude: 

Theorem 28.1. Let F (s) = F (x + iy).be analytic in the strip Xl < X < X2, and let 
F(s) tend, uniformly in every narrower strip Xl + tJ ~ x ~ X2 -~, towards zero, 
when Iyl -+ 00. Moreover, suppose that, for every x in Xl < X < X2, 

+ a:> 

f IF{x + i y) I dy < 00. 

Then it follows that F (s) can be represented as the 5!-n-transform 

+ a:> 

F (s) = V. P. f e-" I{t) dt 
-CD 

1 F(x + iy) is the definite integral of its (absolutely integrable) derivative with respect to y. Hence, by 
the argument of p.178, F(x + iy) is of bounded variation. 
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of the original function 
s+i., 

f(t)= _1_. f eIsP(s)ds (X1 <X<X2), 
2n~ 

s-;a:> 

which is independent of the choice of x in Xl < X < x2. 

When especially requesting that F (s) be a £I-transform or, equivalently, that 
f(t) = ° for t < 0, then it is necessary that X2 = + 00, that is, F(x + iy) must be 
analytic in a right half-plane x > xl, and F (s) must tend, in every angular region 
1 arc (s - xlll ~ "p < 11:/2, towards zero, when s tends two-dimensionally towards 
00 (definition on p. 139). Combination of this condition with the condition that 
F(x + iy) must converge, uniformly in x ~ Xl + 15, towards zero, when Iyl ~OO, 
yields the condition: F (s) tends in every half-plane x ~ x + 15 towards zero, 
when s tends two-dimensionally towards 00. We now claim: This condition is 
sufficient to guarantee that f(t) = ° for t < 0. We select a positive 15 so large, such 
that Xo = Xl + 15 > 0, and we draw a circle centred at the origin having radius 
e > Xo · This circle intersects the vertical line through Xo at Xo + iw and at Xo - iw 
respectively, as shown in Fig. 27. We designate the portion of the circle to the right 
of the vertical line through Xo, orientated in the positive sense, by ~. Invoking 
Cauchy's theorem, we find that 

%0+"0) 

f els F(s) ds = f ets F(s) ds. 
%o-ico fB 

Figure 27 
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By Theorem 25.1, the integral on the right hand side tends, for t < 0, towards 0, 
when e -+ 00. Hence, the same is true for the integral on the left hand side, for 
w -+ 00. It follows that I(t) = ° for t < 0. We have thus arrived at the conclusion of 

Theorem 28.2. When F (s) = F (x + iy) is analytic in the hall-plane x > Xl; 

when F (s) converges, in every hall plane x ~ Xl + (j > Xl, towards 0, when s tends 
two-dimensionally towards 00; and when 

+0> 

(4) f I F (x + i y) I dy < 00 

lor every x > Xl; then it follows that F (s) may be represented as the \!r-translorm 01 
the original lunction 

x+iCX) 

(5) I(t) = 2~i f ets F(s) ds (x> Xl) , 

z -i co 

the integral being independent 01 the choice 01 x in x> Xl. For t < 0, the integral (5) 
yields the value zero. 

The lunction I (t), represented by (5) lor all real t, is continuous in - 00 < t < + 00. 

The last statement is verified by the following consideration: We have, by (5), 

x+ico +co 

I(t) = _1_. Sets F (s) ds = _1_ S et(x+iy) F (x + iy) dy 
2nt 2n ' 

x-i 00 -00 

+co 

e-xt I (t) = 2~ S eitYF (x + iy) dy. 
-co 

Except for the unimportant sign of the exponent, the integral on the right hand side 
is a Fourier integral. By Theorem 24.1, e-xtl(t) is continuous for all t, because of 
(4); hence, I (t) is continuous for all real t. 

Remark: Observe that I (t) equals zero for t < ° and is continuous at t = 0. 
Hence, we must conclude that 

x+ioo 

1(0) = 2 ~i S F (s) ds = ° for x > Xl. 
x-iro 

On p. 142 we demonstrated that the function exp ( - sa) cannot be a \!-trans
form for IX ~ 1. Here, we shall show, by means of Theorem 28.2, that all functions 

(6) F(s) = exp( - sa) with ° < IX < 1 

are \!I-transforms. With s = eei{}, we find that 
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I exp(- s, I = exp(- ffisa) = exp(- (/ cos a -0). 

In the half-plane 9ts;?; 0, we have 1-01 ~ 11:/2, hence cosa.-o;?; cosa.n/2 = 8> 0, 
and 

I exp(- sa) I ~ exp(- 8 ea). 

It follows that the function (6) converges towards zero, when s tends in the right 
half-plane 9ts;?; 0 two-dimensionally towards 00. Moreover, for x;?; 0 it is true 
that 

+... +... +CD 

f I exp( - (x + i ,,)a) I d" ~ f exp( - 8(X2 + yS)a/2) d" ~ f exp( - 81 "Ia) d" < ex). 

-CD 

We conclude that the function (6) is the ~I-transform of the original function 

s+4110 

f(t) = 2~i f expel s - sa) ds (x i:'; 0) . 
• -ico 

The last integral can be evaluated by elementary means only for a. = 1/2; indeed, 
for a. = 1/2 the integral yields: 

f(t) = 1 e-1/4.1 = 1J'(1, t) • 
2 Vit3/1 

Using Theorem 28.2, we can derive Theorem 28.3 which is particularly useful 
in practical applications because of its simple hypotheses. 

Theorem 28.3. When F (s) is analytic in the half-plane 9ts > Xl ;?; 0, and when 
it can be represented in the form 

F (s) = ..£L + ... + .£!L + G~ (0 < IJ :S 1 8 > 0) sal slln sl+8 ..... -, , 

where G (s) is bounded in every half-plane 9ts;?; Xl + () > Xl,' then F (s) is the ~I
transform of the original function 

S+'CD 

f(t) = v. P. 2~i f els F(s) ds (x> Xl)' 
s-ieo 

Proof: The function 

Fl(S) = F(s) _..£L - ..• -~ 
s"I slln 

satisfies the conditions of Theorem 28.2; it follows that Fl (s) ~ {It}, where 

S+'CD 

It (t) = 2~i f e's FJ(s) ds (x> Xl) 
.-ico 

z+ia> 

= _1_. f e's fF(s) _..£L _ ... -~) ds. 
2nt \ sal slln 

z-iQ) 
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Since x > 0, we have, by Formula (25.2), 

z+ico 
1 f "cP ta,,-l 

V. P. 2ni e -;a; ds = c. r(a,) 
s-ift) 

hence, 
z+ico 

1 f , ... -1 , .... -1 
It(t)= V.P. 2ni e"F(s) ds- C1 F(al) - ... - Cn r(a,,) . 

%-i<o 

Setting 
z+ico 

V.P. 2~i J e" F(s) ds = f(t), 
s-ic.o 

we have 

, ... -1 tOn-1 It (t) = f (t) - Cl -- - ••• - C --
r(al) II r(a,.) 

and 

.e {It} = .e {t} - ...£!... - ••• - ~ • 
s'" s .... 

Also 

.e{It} = Fl(S) = F(s) _.£L - ... - ~ 
s'" sOn ' 

hence, 

F (S) = .e {f}. 

For an application of Theorem 28.3 see the function on p. 173, where Cl = ... = 

= Cn = 0, e =1. 

29. A Condition, Necessary and Sufficient, 
for the Representability as a Laplace Transform 

of a Distribution 

It is a characteristic of the ~-transform of a function that it tends towards iero 
when the variable s, two-dimensionally in an angular region I arc s I £ 1p < 7(;/2, 
tends towards 00 (compare Theorem 23.2, Addendum). This property is true in a 
whole half-plane ms ~ xo,provided ~{t} converges absolutely in ms ~ Xo (com
pare Theorem 23.7). The examples ~{~(n)} = sn(n= 0, 1,2, ... ), ms > 0, de
monstrate that the ~-transforms of distributions need not possess this property. 
Actually, these transforms tend towards 00 when s ~ 00 in ms> 0; however, 
not more strongly than a power of s. We shall show that the ~-transforms of 
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distributions are completely characterized by the property of being majorized by 
powers of s. The following Theorems 29.1 and 29.2 will substantiate this claim. 
Concepts and terminology involved in this process are explained in Chapter 12. 

Theorem 29.1. Suppose that the distribution T 01 order k belongs to the space g;~ 
and, consequently, ~{T} = F(s) defines a lunction which is analytic in a hall-plane 
9is > a. We conclude that: 

~{T} = F(s) = 0 (Islk), 

when s, two-dimensionally in a hall-plane 9is ~ a + e (e > 0), tends towards 00. 

Consequently, in every such hall-plane, with the possible exception 01 a circular disc 
centred at the origin in the case that the origin belongs to the hall-plane, F (s) is 
governed by the estimation: 

F(s) = 0 (Islk). 

Prool: A distribution of order k in g;~ can be written in the form 

T = Dkh(t) (k an integer, ~ 0), 

where the function h(t) satisfies the conditions (12.3,4). The transform ~{T} is 
defined by: 

~{T} = sk ~{h(t}} for 9is> a. 

We invoke Theorem 23.7 which guarantees that 

~{h(t}} = 0(1), 

when s, two-dimensionally in 9is ~ a + e, tends towards 00; it follows that 

~{T} = o(lslk). 

The function F(s) is bounded in every finite region; whence it is governed by the 
estimation: 

F(s) = O(lslk), 

in every half-plane 9is ~ a + e, provided the half-plane does not include the 
origin; in the case that the origin belongs to the half-plane, then the indicated 
estimation is valid outside a circle centred at the origin. 

Theorem 29.2. Suppose that F (s) is analytic in a hall-plane 9is > a where it 
satisfies the estimation F (s) = 0 (I s I k), k an integer ~ 0 (outside a circle centred at the 
origin s = 0 in the case that the origin belongs to the hall-plane). Then we conclude 
that F (s) is the ~-translorm 01 a distribution T 01 g;~. 

Prool: We specify a positive abscissa a1: we select a1 > 0, in the case that 
a ~ 0; we choose a1 = a + e (e > 0), whe!l a > O. In the half-plane 9is > a1, 
we define the analytic function H (s) by the expression: 

(1) H(s) = S-k-2F(s).' 
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The fuuction is governed in the specified half-plane by the estimation: 

H(s) = 0(lsl-2); 

consequently, it converges towards zero when s tends, two-dimensionally, towards 
00; it satisfies the condition 

+00 
S 1 H (x + iy) 1 dy < C1J for every x> 0'1· 

-a:> 

According to Theorem 28.2, we have H (s) = ~{h (t)}, where the function h (t), 
which is defined by 

z+ioo 

(2) h(t) = 2~i S etBH(s) ds (x> 0'1) , 

x-ioo 

is zero for t < ° and is continuous for every t in - 00 < t < + 00. Moreover, 

Ih(t) 1 = 2~ I I et(x+iYlH(x+iy) dy I ~ 2~ etx j: 1 H(x+iy) I dy 

= o (ext), 

hence, ~{h (t)} converges absolutely for ffis > x and, consequently, for~s > 0'1. 

If we define a distribution T by means of the formula: 

(3) T = Dk+2h(t), 

then T belongs to ~~, by the definition of Chapter 12. The ~-transform of T satis
fies, by Theorem 14.3, the equation 

£ {T} = sk+2 £ {h (t)} = Sk+2H (s). 
Because of 

Sk+2H (s) = F (s) , 

we have: ~{T} = F(s). Consequently, F(s) is the ~-transform of a distribution 
of ~~. 

The conclusions of the Theorems 29.1 and 29.2 may be combined and presented 
as a theorem. 

Theorem 29.3. Let F (s) be an analytic function in some half-plane. The condition 
F (s) = 0 (I s 1 k), k an integer?: 0, in this half-plane (with the possible exception of a 
circular disc centred at the origm) is necessary and sufficient to assert that F (s) can 
be represented as ~-transform of some distribution T oj ~~. 

The distribution T can be expressed explicitly by F (s) as indicated by (3), 
using (1) and (2). 
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30. Determination or the Original Function 
by Means of Series Expansion of the Image Function 

Having established a function F (s) as a ~-transform, the following technique 
suggests itself as a means of determining the corresponding original function: 
Expand F (s) into a series of image functions having known original functions and 
then return this series to the original space term by term. Certain hypotheses must 
necessarily be satisfied, for the indicated process involves the interchange of ~
transformation and infinite summation. For the special case that F(s) may be 
represented by a partial fraction expansion, conditions taken from the theory of 
functions which guarantee the legality of the termwise inverse transformation 
have been presented in Chapter 26. In this Chapter we derive a theorem of strictly 
analytical character which proves extremely practical in applications. Its verifica
tion requires Lebesgue integration; thus, we introduce two lemmas from the Le
besgue theory. 

Lemma 1. Suppose that the functions tpn (t) are non-negative and Lebesgue 
integrable on the (finite or infinite) interval (a, b), and that the sequence tpn (t) increases 
m'Jnotonically, that is tpn(t) ~ tpn+1(t), and, consequently, converges towards a limit 
function tp (t) which may assume the value 00. Then we can conclude that tp (t) too is 

b 

Lebesgue integrable on the interval (a, b) if and only if the sequence 0 f numbers J tpn (t) dt 
is bounded. In fact, a 

b b 

f tp(t) dt = lim f tpn(t) dt. 
II n-+ Q) a 

This Lemma cannot be verified for Riemann integrals as demonstrated by the 
counter example: Arrange the rational numbers between 0 and 1 as a countable 
sequence: ro, rl, r2, ... , and define the sequence of functions on (0, 1) by 

for t = ro, rl, r2, ... , rn 

elsewhere. 

The limit of this sequence of functions on (0, 1) is clearly 

11 for rational t 
tp (t) = . ° for irrational t. 

However, this limit function is not Riemann integrable, although all hypotheses 
of the Lemma 1 are satisfied: tpn(t) ~ 0, tpn(t) ~ tpn+t{t) , and the sequence of 

1 

numbers Jtpn(t)dt = 0 is bounded. 
o 

Lemma 2. When a) the functions 'ljJn (t) (n = 0, 1, 2, ... ) are Lebesgue integrable 
on the (finite or infinite) interval (a, b); b) I 'ljJn (t) I ~ tp (t) for all n, tp (t) being Lebesgue 
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integrable on (a, b); c) the sequence 1f1n (t) converges lor almost all values 01 t to a limit 
lunction 1f1 (t), when n -+ 00; then we can conclude that 1f1 (t) too is Lebesgue integrable 
on the interval (a, b) and, in lact, 

b b 

f 1f1 (t) dt = lim f 1f1n (t) dt. 
,,-'" II II 

The above quoted counter example may be used once again to show that the 
second Lemma too cannot be verified for Riemann integration. 

We can now state and verify the Theorem which describes the possible term
wise inverse transformation of a series of image functions into the original space. 

Theorem 30.1. Let the lunction F (s) be represented by a series 01 l!-translorms1 

CD 

F(s) = L F.(s) , F.(s) = £ {/.(t)}, 
.=0 

whereby all integrals 

'" 
£ {t.} = f e- sl I.(t) dt = F.(s) (v = 0, 1, ... ) 

o 

converge in a common hall-plane ffis ~ Xo. Moreover, we require that 

a) the integrals 

£{I/.i}= Ie-sf 1/.(t)ldt=;,G.(s) (v=O,1,···) 
o 

converge in this hay-plane or, equivalently, the integrals G. (xo) exist; 

b) the series 

00 

converges. The last condition implies that L F. (s) converges absolutely and unilormly 
in ffis ;S Xo. ex> .=0 

Then we can conclude that' L I.(t) converges, indeed absolutely, towards a lunc-
.=0 

tion 1 (t) lor almost all t ~ 0; this I (t) is the originallunction 01 F(s): 

i F.(s) .-0 i I.(t) . 
• =0 .=0 

l!{/} converges absolutely lor ffis ~ Xo. 

1 The functions Iv (t) need be integrable only in the Lebesgue sense. 
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Prool: We set 

" 
e-"" L 1/~(t)I='Pn(t) . 

• ~o 

Then we have 

hence 
lim 'Pn (t) = 'P (t) 
,,-co 

exists for all t, possibly assuming the value 00. By hypothesis b), there exists the 
limit 

11 " Q) ex) 

lim L G. (xo) = lim L f e-,.·I I I. (t) I dt = lim f 'Pn (t) dt, 
ft.-+co ",==0 n-+oo .=-0 0 n-+Q) 0 

00 

which implies that the numerical sequence S 'Pn(t)dt is bounded. We conclude, 
o 

by Lemma 1, that 'P (t) is Lebesgue integrable. It follows that 'P (t) must be finite 
almost everywhere (otherwise the integral could not exist). This implies that 

e-"·I £, I I. (t) ',thus also £, 'I. (t) , and all the more£' I. (t) 
v=-O .=-0 v=o 

converges almost everywhere. We set 

co 

L I. (t) = I (t) almost everywhere . 
• ~o 

Also, by hypothesis a) 

" 
e-,,·I L I. (t) = "Pn (t) 

.=0 

is Lebesgue integrable on the interval (0, 00) (the integral exists not merely as a 
limit when the upper limit tends towards 00, but immediately). We have 

" '''Pn(t) , ::£ e-,.ol L [/.(t)\'='Pn(t)::£'P(t), 
.=0 

where 'P (t) is Lebesgue intl'grable as demonstrated earlier. Moreover, "Pn (t) con
verges almost everywhere towards "P(t) = e-xotl(t). Hence, "P(t) is Lebesgue inte
grable in the interval (0, 00), by Lemma 2, and 

co co 

J "P (t) dt = lim J "Pn (t) dt, 
o n~(l) 0 

that is, 

J e-xot I (t) dt = £, j e-xot I. (t) dt =£, F. (xo) = F(xo). 
o .=0 0 .=0 
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A function which is Lebesgue integrable in an interval is, necessarily, absolutely 
integrable; thus t1{t} converges absolutely for s = xo, and the conclusion of Theo
rem 30.1 is verified for s = Xo. For ffis ~ Xo we find 

I e-st ~ t. (t) I ~ cp (t) , 

hence, the conclusion is true also for ~s ~ Xo. 
We use Theorem 30.1 to derive several theorems which are often useful in 

applications of the t1-transformation. 

Theorem 30.2. When the series 

converges absolutely tor I s I > e ~ 0, then it is the t1-transform of the series 

which is obtained by termwise transformation of the former; the latter converges ab
solutely for all t =1= o. 

Remark: The series of F (s) is transformed into a Dirichlet series 

by means of the substitution s = eZ • A Dirichlet series which converges at some 
point and, consequently, in a right halt-plane need not converge absolutely any
where. 

Proof: We set 

hence, the integrals 

F (s)= ~ 
• sA,. , 

tA,,-1 
t. (t) = a. r(A.) ; 

m 00 

f e-st I f. (t) I dt = k~~) f e- st tA,.-1 dt 
o 0 

converge for Dis > O. By hypothesis, the series 

converges for every Xo > e ~ O. Thus, by Theorem 30.1, 
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converges absolutely for almost all t ~ 0, and it represents the original function 
of F(s). However, when such a series converges absolutely for some to> 0, then 
it converges absolutely also for all complex t with 0 < I t I < to (the point t = 0 
must be excluded in the case that some )., < 1). Consequently, the series con
verges for all t =1= O. 

An example which demonstrates the application of Theorem 30.2 is shown on 
p.264-. 

A frequently encountered special case of Theorem 30.2 is given in the case 
that the exponents ).. are natural numbers; that is, ).. = 11 + 1 (the exponents 
must be positive; hence, the smallest exponent is equal to 1): 

'" (1) F(s) =.I; :~1' 
.=0 s 

Let e designate the exact radius of convergence of the series, then the series con
verges also absolutely for I s I > e. Thus, the corresponding original function is 
represented by the series 

(2) 

More precise statements regarding the relationship between these two series can 
be made in this special case. The radius of convergence of the series (1) is given 
by the Cauchy-Hadamard formula; it is 

!! = lim vr;;:J . 
• -+'" 

Consequently, to every c; > 0, there exists an N, such that for 11 ;;::: N 

I a.1 < (e + c;)' ; 

thus, there exists an A > 0 such that 

I a.1 < A (e + c;r 

for all 11 ~ 0; hence, series (2) is majorized by the series 

A ~ (e + e)" I t I, 
.e.., "I I . ,=0 

We conclude that series (2) converges for all complex t, and represents an entire 
function 1 (t) which is governed by the condition 

(3) I/(t)1 <.4 e(e+e) It I 

(to every given c; > 0, an appropriate value A must be selected). We say I(t) is 
"01 exponential type". 
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Conversely, if an entire function (2) of exponential type is given which is sub
jected to the condition 

(4) I/(t) I < A ea1tl (A> 0, a> 0), 

and if M (r) designates the maximum of II (t) I on the circular disc I t I ;£ r; then 
we have by the Cauchy estimation of the coefficients 

Here r may be any positive number. For every'll we choose a fixed value of r, 
namely r = 'II/a, and we obtain 

fro--, ea V~ 
y I a. I < -;- y A'll!. 

The formula 

log'll! = 'II log'll - 'II + 0 (log'll) for 'II -+ co 

can be verified by elementary means. It follows that 

(err:.-;) 1 (lOg,,) 10g-;yA'JI! =1-log'JI+-;-logA+log'JI-1+0 -,,- =0(1), 

hence, 

eV-lim - A'll! = 1, 
,,-to co V 

and we find for the radius of convergence e of the series (1): 

e = lim VI a.1 ~ a. 
'-HO 

Thus, e is finite and the series (1) has a region of convergence. Such a series re
presents a function which is holomorphic at s = 00, where it vanishes. We sum
marize these conclusions in: 

Theorem 30.3. A lunction F (s) which is holomorphic at s = 00, where it vanishes, 
and which, consequently, is represented by a series 01 the lorm (1) with finite radius 
01 convergence e ;;:;: 0 is a r!-translorm. Its original function 1 (t) is an entire lunction 
1 (t) 01 exponential type which is represented by the series (2) and which satisfies the 
estimation (3). - Conversely, every entire lunction I(t) of exponential type which is 
represented by the series (2) and which satisfies the estimation (4) has a r!-translorm F (s) 
which is holomorphic at s = 00, where it vanishes and which is represented by the 
series (1), the latter having a finite radius 01 convergence which satisfies (! ;£ a. 

The conclusion of Theorem 30.3 may be presented in a different manner: Let 
a represent the class of entire functions 1 (t) of exponential type, 
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~ represent the class of functions F (s) which are analytic outside of some circle 
and which are holomorphic at s = 00, where they vanish. 

Then, every function of one class is related to a function of the other class by 
means of the ~-transformation. 

We have here the ideal situation of two classes of functions, each being charac
terized by properties taken from the theory of functions, which are related in a 
one-to-one manner by means of the ~-transformation. 

Another, very general theorem, which follows from Theorem 30.1, is the follow
ing: 

Theorem 30.4. Suppose that the functions II (t) and f2 (t) belong to the class :So, 
and that the corresponding ~-transforms F l(s) and F 2 (s) converge absolutely in some 
half-plane. Let q; (Z1, Z2) designate a function of two variables which is holomorphic 
at Z1 = Z2 = 0, where it vanishes. Then it follows that q;(Fl(s), F2(S» is a ~-trans
form which converges absolutely in some half-plane. 

Supplement: An analogous theorem can be formulated for functions q; of one or 
arbitrarily (finitely) many independent variables. 

Proof: The hypothesis concerning q; implies that q; is a power series 

00 

q;(Zl' Z2) = L a •• P, z~' Z;I with aoo = 0 , 
"bP, =0 

which converges absolutely on a pair of circular discs 1 Z11 < (! and 1 z21 < (!; 
therefore it may be presented in an arbitrary countable sequential order. When 
9ts > IX is a half-plane of absolute convergence of both ~{II} and ~{l2}' then we 
conclude, by the Convolution Theorem 10.1, that all functions 

are ~-transforms which converge absolutely in 9ts> IX, and which have the 
original functions 

fro, • f ;'" (111 ~ 1, 112 ~ 1), and f iI', (112 = 0), f ;'" (111 = 0). 

We define 

00 00 

f e-slllI(t)ldt=Ht{s), f e-s' If2(t) Idt= H2(S). 
o 0 

For a sufficiently large value Xo> IX we have, by Theorem 23.7, 

IHI(s)I<(!, IH2(S)I<(! for 9ts~xo, 

hence 
00 

(5) L I a.,., I Hi' (xo) Ha' (xo) 
"b"l == 0 

converges. 
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Corresponding to F. and I. of Theorem 30.1, here, for 'VI ;S 1 and 'V2 ;S 1, we 
have the functions 

a p,P, F"i' F';.' and av,v, I~v, * I;P. 

respectively; thus, the functions G. have the following structure: 

co 

G. (s) = I av,v, I f e-· I I t ;P, * /:v'l dt. 
o 

We have 

t t 

I II * /21 = f II ('r) 12 (t - .) dt ~ f I II (.) I . I /2 (t - .) I d. = I II I * I 121, 
o o 

and also 

Consequently, 

Gp (Xo)~ I. ap,p,1 J e- s• t I II I 'P, * 1/21'" dt . 
o 

Employing the Convolution Theorem, we find that 

G. (Xo) ~ I a.,p,1 (j e-s •1 I II I dt )P' (j e- s•t 1/21 dt r = I ap, •• 1 Hi' (xo) H~' (xo). 
o 0 

The derived conclusions hold also when either VI = 0 or 'V2 = O. The convergence 
of series (5) guarantees convergence of ~G.(xo) as well. By Theorem 30.1, cp (F 1, F 2) 
is the ~-transform of 

co 

(6) I(t) = L a., •• It·, * I;" (aoo = 0), 
"hPS=O 

and ~{f} converges absolutely for ffis > Xo. 
Many functions can readily be recognized as ~-transforms by the use of Theo

rem 30.4. Consider, for instance, the function 

F{s) = sinhxVs (-l<x<+l), 
sinhlVs 

which appears during the solution of parabolic boundary value problems by means 
of the ~-transformation (compare p. 288). Writing this function in the form 

and defining 

8(;<-/)0 -8.-(%+1)0 

1-8-2/ 0 
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we have: F(s) = cp(F1,F2), where 

(7) 

The function cp (Z1, Z2) is holomorphic at Z1 = Z2 = 0, and cp (0, 0) = o. Moreover 
(see p. 56), 

where ",(u, t) is a. ~o-function, its ~-transform being absolutely convergent for 
ats> o. We see that F1(S) for x < I, F2(S} for x> -I, hence F(s} for -I < 
< x < I are Q-transforms with half-planes of absolute convergence. 

For this case, we oould evaluate the convolution in the representation of 1 (t), 
employing the transcendental additivity theorem (11.3) for the function ",(u, t). 
It is simpler, though, to write for F (s) the series development (7): 

F(s)= {e(S-')Vs - e-(s+lI'4 i:. e-h'Vs = i:. (e-(h'-S+')Vs - e-(h'+S+1lVS) .-0 .-0 
and to transform, term by term: 

CD 

1 (t) = L (",(2 'II I - x + I, t) - ",(2 'II I + x + I, t}) ._0 

The second sum in the brackets can be modified, using 'II = - P. -1, thus: 

CD -CD 

L (- 2 'II 1- x_l)e-(-2.'-..:-I)"/4I = L (2 p.l + I-x) e-(2,.1+1-..:)"/4' • 
• -0 ,. __ 1 

Thus, we find that 

(8) 

This function is closely related to the Theta function 

(9) 

indeed, one finds that 

(10) I(t) = __ 1_ [an-.(IJ.,/t')] (-I < x < + I). 
21" au 11- (1-.)/2' . 

I 



31. The ParsevaI Formula of the Fourier Transformation 
and of the Laplace Transformation. 

The Image of the Product 

Suppose that the power series 
co 

<p(z) = L a" z· 
fI-O 

has the radius of convergence r > 0; then we find, for 0 ~ (! < r: 
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The series converge absolutely and uniformly; hence, they may be multiplied and 
integrated, term by term: 

Using 

f e'(II-m)' df} = 
+3 12 n for n = m 

-3 0 for n =t= In, 

we find that 

This expression is known as Parseval's Formula for Power Series. Our aim is to 
derive the analogous formula for the ~-transformation. 

In the above formula we consider the power series on a specified circle: I z I = (!, 

where, in fact, it represents a Fourier series involving the complex oscillations e' ,,&~ 
Similarly, we shall consider the ~-integral on some specified vertical line 9ts = x, 
where actually it is a Fourier integral. Therefore, we shall firstly derive the Parseval 
formula for Fourier integrals. For this we shall need several theorems; the first of 
these is an Inversion Theorem, using other conditions than the Inversion Theo
rem 24.2. 

+00 

Theorem 31.1. Suppose that I I g (x) I dx < 00, so that G (y) = ~{g} exists for all 
-00 

real y. When the Fourier integral 

+co 

h(x) = V.P. 21n f eby G(y) dy 
-co 
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exists for some specified value x, and g is continuous at x, then we have: 

+CI) 

g(x) = V.P. 21n f e""Y G(y) dy. 

Proof: Formula (24.4) implies that 

+Y +a> 

I(x, Y) = 21n f ehYG(y) dy= ! f Sin~~~~) g(E) dE 
-Y -a> 

1&-d 1&+" CI) 

= .!.. f +.!.. f +.!.. f = I 1(x, Y) + Is(x, Y) + 18(x, Y). 
15 n n . 

-CI) 1&-" ~+d 

Should we redefine g(,;) to be zero in the interval (x - 15, x + 15), we would ob
serve contributions in the above equation only by the first and the third integral: 
It + Ia. Unquestionably, the modified function is continuous at x, and it is of 
bounded variation in some neighbourhood of x. As shown in the proof of Theorem 
24.2, It + Ia tends, as Y -+ 00, towards the value of the modified function at x, 
that is towards zero. I (x, Y) tends towards h (x) when Y -+ 00, hence, the same 
is true for 12 (x, Y): 

1&+" 

12(x, Y) = ! f sin~~~~) g(,;)dE~h(x)when Y-+co. 
1&-" 

Next, we form the arithmetic mean of 12 with regard to Y:l 

2Y 2Y 1&+" 

m(x, Y) = 2~ f 12(x, y) dy = 2~Y f dy f Sin~~;~) g(E) dE 
o 0 1&-" 

1&+" BY 

= 2~Y f !~~ dE f siny(x -,;) dy 2) 
1&-" 0 

1&+" 1&+" 
1 f (~) 1-cos2Y(x-~) d~ = _1_ f (~) (sin Y(x - ~»)2 d~. 

= 2 n Y g !O (x - ~)S !O n Y g !O X _ ~ !O 

1&-" 1&-" 

The last integral is known as Fejb Integral in the theory of Fourier series. There 
it is known that, for arbitrary 15, this integral, divided bY;lt Y, tends towards g(x), 
when Y -+ 00, provided g is continuous at x. This implies that 

m (x, Y) ~ g (x) when Y -+ 00 • 

1 The upper limit of integration 2 Y has been chosen to avoid fractions in the subsequent expressions. 

2 The function sinY(1&-E) 
x-E- g(E) 

is integrable in the rectangle 0 :S y :S 2 Y, x - 6 :S ~ :S x + 6. The double integral is repr~sentable by 
each of the two iterated integrals, since both exist. This implies equality for the iterated integrals; in 
other words: we may interchange the order of integration. 
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When the function 12 (x, Y) has the limit h(x), then, certainly, its arithmetic 
mean m(x, Y) has the same limit; whence g(x) = h(x). 

Remark: Theorem 31.1 is analogous to the well known theorem: "When the 
Fourier series of a function f(x) converges at a point of continuity of f, then it 
converges towards the value of the function." 

The following theorem provides sufficient conditions for the convergence of 
+CD 
J IG(y) I dy. 

-CD 

Theorem 31.2. Suppose that 
+CD 

f I h(x) I dx < 00, I h(x) I ~ C for all x, and that -~ {h} = H(y) ;;;;; O. 
-CD 

Then we conclude that 
+co +CD 

f I H(y) I dy = f H(y) dy ~ 2 n C. 
-CD -CD 

Proof: We start with the Fejer Integral for h(x), but we Uf>e x =0, and the 
limits of integration - 00 and + 00, and we re-trace the above proof in the reverse 
direction. In this manner we find: 

+CD +co 

m(Y) = n1y f h(E) (sinJEf dE = 2~Y f h(E) l-C~2YE dE 
-CD -CD 

+CD 2Y IIY +CD 

= 2~Y f h~E) dE f sin E 7] d7] = 2~Y f d7] f h(E) sinE"E dE. 
-co 0 0 -CD 

The interchange of the order of integration in the fourth integral is permissible, 
since +CD 

f h(E) SinE"IE dE 
-CD 

+00 

converges uniformIyfor 0 ~7] ~2Y, because I I h(E) I dEexists,and I (sin 7] E) IE I ~ 
-00 

~ 7] ;;;;; 2Y. It follows that the integration with respect to 7] may be performed 
under the integral symbol; in this manner we produce the third integral. 

The subsequent modifications correspond precisely to the several steps which 
led to equation (24.4) when taken in reverse order; they can be supported by the 
same argumentation: 

+CD +CD 

f h(E) SinE"IE dE = ! f h(E) 
-CD -CD 

+CD +'1 +'1 +CD 

= ! f h(E) dE f eiye dy = .! f dy f e-cye h(E) dE 
-CD 

+'1 

=~fH(y)dy. 
-'I 
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Substituting this in the expression for m(Y), one finds: 

2Y +'1 

m(Y) = 4~Y f dn f H(y) dy, 
o -'I 

or, upon interchanging the order of integration (compare Fig. 28), 
y 

2Y --- --- - ----- -

y 

~Y ------ -- ------

Figure 28 

+SY 2Y +2Y 

(1) m(Y) = 4~Y f H(y) dy f dn = 4~Y f H(y)(2 Y -Iy I) dy. 
-2Y \1\ -2Y 

The original definition of m (Y) implies, since I h (~) I ~ C, that 

= ~ j 0) ( s~ urdu = C ; 
-0) 

hence, for the modified expression (1) of m(Y) we produce: 

1 
4nY 

+IIY 

f H(y)(2Y-IYDdy ~c 
-BY 
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or 
+IIY 

I H(y) (1 - ~ ~) dy ;;! 2 n C . 
-IIY 

The hypothesis H (y) ;;;; 0 enables us to rewrite the last expression as follows: 

+IIY 

I H(y) (1 - ~Y J) dy ;;! 2 n C. 
-IIY 

A fortiori, for 0 < ~~ < 2 Y, we have: 

:II. 

I H(y) (1 - ~~) dy;;! 2 n C . 
-:II. 

When, for fixed values Yl andY2, the number Y tends towards 00, then 1 - (Iy 1/2Y) 
tends, uniformly in the interval of integration, towards 1. Consequently, one ob
tains: 

:II. 

IH(y)dy~2nC, 

where Yl and Y2 may represent any arbitrary pair of positive numbers. Thus it 
follows necessarily that 

:II. + ex> 

lim I H(y) dy = I H(y) dy 
"" ,.-+ CD -71 - co 

+r8 exists, and is ;;i 2nC, since H (y)dy is non-decreasing for growing Yl and Y2, 
and bounded above. -.11 

Theorem 31.3 (Convolution Theorem of the Fourier Transformation). Suppose 
that 

+ ex> + ex> 

I Igl(X) I dx < 00, I I g2 (x) I dx < 00 ; 
-ex> 

hence Gl (y) = ~{gl} and G2 (y) = ~{g2} exist for aU y; moreover, let it be assumed 
that 

+.., +.., 

I I gl (x) III dx < 00, I / gil (x) /2 dx < 00 . 
-.., -.., 

Then the convolution with infinite limits of integration 

+.., 

gl *g2 = I gl(E) g2(X - E) dE 
-.., 
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exists for all x. and we have 

~ {gl • g2} = ~ {gl} . ~ {g2}. 

whereby ~ {gl * g2} converges absolutely. 

Proof: Here. and in the sequel, we need the 

Cauchy-Schwarz Inequality: 

Suppose that the functions f (x) and g (x) are integrable in every finite subinterval 
of·the (finite or infinite) interval (a. b). and suppose that: 

b b 

J I/(x) 12 dx < ex>, J I g(x) 12 dx < ex> 

A A 

b 

then f 1 (x) g (x) dx exists, and it is true that 

b 2 b 2 b b 

J I(x) g(x) dx ~ (J I/(x) g(x) I dX) ~ J I I(x) 12 dx • J I g(x) 12 dx . 
a 4 "III 

We firstly argue, for the specified hypotheses, the existence of gl*g2, since 

+00 +00 +'" 

J I gd~) 12 d~ < 00, J 1 g2 (x - ~) 12 d~ = J 1 g2 (u) 12 du < 00 • 

-00 -CD 

Next, we employ the substitution u = x - ~ to show that 

+'" +00 

G1 (y) G2 (y) = J e-ive gl W d~· J e-iyu g2 (u) du 

The fact that the integrals converge absolutely enables us to interchange the 
order of integration, hence 

+00 + 00 

G1 (y) G2 (y) = J e-iyx dx J gl W g2 (x - ~) d~ = ~ {gl • g2} 
-co -co 

The resulting integral too converges absolutely. 

Theorem 31.4 Starting with the hypotheses 01 Theorem 31.3, we can conclude that 
gl * g2 is continuous; in fact, gl * g2 is unilormly continuous lor all values 01 x. 
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Proof: We form the difference of the convolution integral evaluated at two 
neighbouring points x and x + r5; then we apply the Cauchy-Schwarz inequality 
to this difference. In this manner we find 

+ ex> + ex> s 

f gd~) g2(X + r5 -~) d~ - f gd~) g2(X -~) d~ 

+ ex> 2 

f gl(~) [g2(X + r5 -~) - g2(X -~)] d~ 
-ex> 

+ex> • + ex> 

;;;; f 1 gd~) 12 d~· f 1 g2 (x + r5 - ~) - g2 (x - ~) 12 d~ 
-ex> -ex> 

+ ex> + ex> 

= f Igd~)2Id~· f Ig2(U+r5) -g2(U) 12du . 
-ex> -ex> 

The second integral tends towards 0,3 when 15~ O. This necessarily implies that 
the difference on the left hand side also tends towards zero when r5 -+ 0, inde
pendently of the chosen value of x. 

We now have the means to derive the Parseval formula for the Fourier trans
formation. 

+oc 
3 In the Lebesgue theory, it is well known that the existence of J Ig(x) 1 2 dx implies: 
when6 ... oo. + ex> -co 

fig (x + IS) - g (x) 12 dx ~ 0 as IS ~ 0 • 

For Riemann integrals we arrive at the same conclusion using the theorem m{lntioned on p.48. Firstly, 
we use 

to show that 

.f +g(x + (5) - g(x) 12 dx ~ j (I g(x + 15) I + I g(x) 1)2 dx ~ 2jlg(X + (5) 12 dx + 2j Ig(x) 18 @; 

hence, when a priori 161 < 1, then one can select a sufficiently large X so that 

co -x 11 g(x + (5) - g(x) 12 dx and similarly _[ I g(x + 15) - g(x) 12 dx 

become arbitrarily small. The points (infinite number) in -X ~ x ~ +X where Ig(x - 6) - g(x) 12 is 
merely improperly integrable can each be surrounded by sufficiently small intervals so that the contrib
ution on these intervals to the integral becomes arbitrarily small. g(x - 6) - g(x) is properly inte
g.rable on the remainder, and consequently bounded; hence, 

f Ig(x + (5) - g(x) 12 dx ~ M f Ig(x + 15) - g(x) Idx. 

Invoking the previous theorem, we conclude that this is arbitrarily small for sufficiently small values 
of 6. 
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Theorem 31.5. Suppose that 

+co +co 

fig (x) 1 dx < 00 and fig (x) 12 dx < 00 ; 

-co 

hence G (y) = 5{g} exists for all real y; then we have, for all real x, 

+co +co 

f g(E) g(E - x) dE = 2~ f eby G(y) G(y) dy. 
-co -co 

Especially for x = 0, this yields the Parseval Formula: 

+co +co 

(2) f g(E) g(,) d, = 21n f G(y) G(y) dy 
-co -co 

or 
+co +co 

(3) fig (,) 12 d, = 21n fiG (y) 12 dy. 
-co -co 

Proof: First, we show that 

+co +co +co 

ty{g(-x)} = f e-i ,II'g(-x)dx = f eiYSg(-x)dx = f e- iys g(x)dx=G(y) 
-co -co -co 

Next, we form the convolution 

+co 

h(x) = g(x) • g( -x) = f g(,) g(, - x) d,; 
-co 

by Theorem 31.3, it follows that ~{h} = H (y) converges absolutely; that is 

+co 

f 1 h (x) 1 dx < 00, 

-co 

and 

H(y) = ty {g} . ty {g( -x)} = G(y) G(y) = 1 G(y) 12 ~ o. 

Moreover, h(x) is bounded, for the Cauchy-Schwarz inequality implies that 

1 h(x) 12;;;;; JCO I g(,) 12d,' JCOI g(, -x) 12d, = ( JCOI g(,) 12d,f 
-ex) -0) -co 
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Observe that all hypotheses of Theorem 31.2 are satisfied for h(x), consequently 

+CD +<0 

f 1 H(y) 1 dy and a fortiori 1 f . - eUY H(y) dy 2n 
-CD -CD 

converge for all x. The function h (x) is continuous for all x, by Theorem 31.4; 
hence, by Theorem 31.1, we have 

+CD +CD 
1 f 1 f -hex) = - etsY H(y)dy = - eby G(y) G(y) dy 

2n 2n ' 
-CD -CD 

which is the conclusion of the Theorem. 
+00 

Remark: Since the integral S Ig(x) 12dx occurs in the Parseval formula, it is 
-00 

clear that the convergence of this integral must be presumed. The additional 
+00 

hypothesis regarding the convergence of S I g (x) I dx is introduced to guarantee 
-00 

the existence of G(y) in the conventional sense (pointwise convergence). This 
hypothesis can be relaxed when convergence in the mean replaces pointwise con
vergence, in a manner analogous to the one employed with the Fourier series. 
However, this more general approach requires Lebesgue integration and other 
more powerful mathematical tools. 

The Parseval formula can easily be extended to two functions. 

Theorem 31.6. Suppose that 

+CD 

f I g2 (x) I dx < 00, 

-CD -CD 

+CD +CD 

f 1 gl (x) 12 dx < 00. f / g2 (x) /2 dx < 00 , 

-CD -CD 

then the generalized Parseval Formula for the Fourier transformation 

+CD +CD 

(4) f gI(x) g2 (x) dx = 21 n f GI(y) G2 (y) dy. 
-CD -CD 

holds. Eq. (4) can also be written as follows: 

+CD +c:o 

(5) f gl(x) g2(X) dx = 21n f GI(y) G2 ( - y) dy. 
-CD 
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Remark: Observe that in formula (4), G2 (y) is certainly not the Fourier trans
form of g2 (x); actually, we have ~{g2 (x)} = G2 ( - y). 

Proof: The identity 

4 a b = I a + b 11_\ a -b II + i I a + i b II-i I a -i b II 

can easily be verified by the introduction of the substitutions I a + b 12 = 

= (a +b) (a +b), ... and the subsequent execution of all indicated multiplications. 
Using this identity, we demonstrate that 4gdx)g2(X) can be expressed as the 

+00 __ 

sum of four exact squares; whence, the integral 4 J gdX)g2(X)dx can be evalu-
-00 

ated by integrals of these squares. Theorem 31.5 implies that these integrals are 
equal to integrals of the squares of the corresponding Fourier transforms, divided 
by 2 n, as for instance shown by: 

+m +m 

f I gl(x) + gs (x) la dx = 21:11 f I Gl (y) + Ga (y) la dy. 

Using the above identity once more, we produce by adding these integrals 

+CD 
1 f -----4 2:11 Gt(y) Ga(y) dy, 

thus verifying formula (4). 
Defining 

ga (x) = k (x) , and consequently g2 (x) = k (x) , 
we find: 

+CD +CD 

Ga(y) = W{gs} = W{k) = f e-'''s k(x) dx = f e'Ys k{x) dx = K{ -y), 

which implies that 

Ga(y) = K{ -y). 

Replacing in formula (4) the functions ga (x) and Ga (y) by k (x) and K (-y) re
spectively, we produce a formula which differs from formula (5) only in notation. 

The Parseval formula for the ~-transformation can now readily be derived, 
using Theorem 31.5 and Theorem 31.6. Indeed, we obtain in this manner not 
only the Parseval formula for the one-sided ~-transformation but also one for 
the two-sided ~-transformation. 

Theorem 31.7. When, for some real x, 

+m +CD 

f e-'" If{t) I dt < 00, fe-hI If{t) ladt < 00, 
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then the Parseval Formula 

+m +m 

(6) f e-b'l/(t)ladt = 21n f IF(x+iy)lady 
-m 

is valid lor the two-sided translormation I:!n{/} = F (s). When, with Sl = Xl + iY1 
and Sa = Xa + iYa, 

+m +CD 

f e-I&" I h(t) I de < 00, f e-I&·t I/a(e) I de < 00, 

-m -CD 

+m +CD 

f e-h"lh(e) ladt < 00, J e- b .' I/a(t) ladt < 00, 

-CD -m 

then the generalized Parseval Formula: 

+CD +CD 

(7) f e-(s,+s.), h(t)/a(t)dt = 21n f FI(Sl+iy)Fa(sa+iy)dy 
-CD -CD 

holds lor the I:!n-translormation. 

A corresponding theorem is true lor the I:!I-translormation; lor this purpose, the 
integrals 01 the hypotheses. and 01 the left hand sides of formulae (6) and (7) are to be 
evaluated only between 0 and 00. 

Proof: We substitute into formula (4) of Theorem 31.6 

gl (t) = e-s" h (t). ga (t) = e-S" fa (t). 
hence 

G1(Y) = FI(sl +iy), Ga(y) = Fa(sa+iy). 

and we obtain formnb (7). For h = f2 = I. and Sl = S2 = x. this yields formula 
(6). In the case of the I:!I-transformation, gl and g2 are to besetequaltozerofor 
e< O. 

In the theory of the one-sided I:!I-transformation, we may consider the function 
F (s) in the Parseval formula not only on a single vertical line. but in an entire 
half-plane. This follows from the fact that convergence of 

m 

fe-h.' 1 f(e) la dt 
o 

for some real Xo implies convergence not only of 

j e-2 %1 1 f(t) 12 dt for X > xo. 
o 
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but also of 
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j e-'" I/(t) I dt for x > xo· 
o 

The last conclusion follows from the Cauchy-Schwarz inequality: 

co CD 

:a f e-2(.-~.)' dt f e-h •I II (t) 12 dt. 
o 0 

Thus, by Theorem 31.7, we may write the Parseval formula for x > xo. 
The above considerations suggest the introduction of the abscissa of conver-

gence "2 of the integral : co 

fe-hI I/(t) 12 dt. 
o 

For thi~ purpose, we define "2 as the Dedekind cut between those real x for which 
the integral converges, and those real x for which it diverges. Equivalently, we 
may define "2 as the lower limit of those x for which the integral converges. We 
shall call "2 the second power abscissa of the ~I-transformation4. We can now 
formulate the following theorem. 

Theorem 31.8. The Parseval Formula 01 the ~I-translormation 

co +co 

(8) f e-2o<I I/(t)1 2 dt= 21n f IF(x+iY)1 2 dy 
o -co 

is valid lor x > "2. 
The main interest of Theorem 31.8 lies in the following fact: The quadratic 

mean of F (s) along a vertical line of abscissa x: 

+co 

m(x) = 21n f I F(x + iy) 12 dy 
-co 

exists for x > "2; it can be expressed as the ~I-integral of the non-negative func
tion I/(t) 12, for the real argument s = 2x. Such an ~I-integral exhibits a very 
perspicuous behaviour, as shown by 

Theorem 31.9. When lP(t) ~ 0, then in the half-plane of convergence of ~{IP(t)} = 
= q, (s), the function q, restricted to real-valued x is completely monotonic and loga
rithmicaUy convex, that is log (q, (x» is convex. 

4 "8 may, for some given function /, assume the values + 00 or '- 00. 
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Proof: By Theorem 6.1, we have 

hence, 

CD 

4>(n) (x) = (_l)n f e-:&I tft fJ7(t) dt, 
o 
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A function which exhibits this property is called completely monotonic. It is 
monotonically decreasing, because of !P'(x) ;;::; 0; it is convex, because of !P"(x) ;;;;; o. 
The more specific property of logarithmic convexity is demonstrated by the 
following argumentation: We have, for -00 < y < +00, 

CD 

14> (x + i y) 1 ~ f e-~' fJ7 (t) dt = 4> (x), 
o 

thus, 5 

sup 1 !P(x + i y) 1 = 4> (x) . 
-00<,,< +<0 

At this point we invoke a theorem, which is taken from the theory of functions: 
Three Lines Theorem: Suppose that the function 4> (s) = 4> (x + iy) is ana

lytic and bounded on the strip a ;;::; x;;::; b. Let us define: 

sup 14> (x + i y) 1 = M (x) . 
-00<,,<+<0 

When a ;;::; Xl < X2 < Xs ;;::; b, then we have for !P (s) $ 0: 

Xl log M(Xl) 1 

x2 log M(x2) 1 Sl; O. 

X3 log M(xa) 1 

This indicates that the triangle with the comers (x.,y.),y. = logM(x.) ('I' =1, 
2, 3) has a positive area, which implies that the comer (X2, Y2) lies beneath the 
straight line connection of the other comers (Xl. Yl) and (xs, ys); thus, the func
tion logM (x) is convex. 

In our application of this theorem, M (x) = !P (x); thus the conclusion of Theo
rem 31.9 is verified. 

Upon replacing m(x) by the left hand side of (8), and then applying Theorem 
31.9; we obtain: 

Theorem 31.10. When "2 < + 00, then there exists-the quadratic mean m (x) for 

5 We use the symbol sup f (y) to desiguate the least upper bound of f (y) in the interval a ;;; y ;;; b. 
a~1J~b 
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x> "2; it is an arbitrarily olten differentiable, completely monotonic.logarith
mically convex lunction. 

Formula (7) enables us to draw an important conclusion. Under the hypothesis 
S1 = S2 = 0 it has the form 

+co +co 

f h(t) 12(t) de = 21n f FI(iy) F2(iy) dy. 

In the case that 
+co 

f h(t) 12(t) dt = 0, 

that is when It (t) and 12 (t) are orthogonal, then it follows that 

+co 

f Ft{iy) F2(iy) dy = o. 
-co 

We conclude that the corresponding functions Fdiy) and F2(iy) too are ortho
gonal. We summarize this conclusion in: 

Theorem 31.11. Suppose that the lunctions In (t), n = 0,1,2, ... , have the 1011011'
ing three properties: 

+co +co 

1. f 1 In(t) 1 dt < 00, 2. f 1 In (t) 12 dt < 00, and 
-co -ex> 

+ ... 

s. f In(t) Im(t) dt = 0 lor n4= m, 
-co 

that is, the In (t) constitute an orthogonal system ollunctions in the interval (- 00, + 00). 
Then the corresponding image lunctions Fn(s) = ~II{/n(t)} on the imaginary axis, 
that is the lunctions Fn(iy), also lorm an orthogonal system: 

+ ex> 

f Fn(iy)Fm(iy)dy =0 lor n4=m. 
-ex> 

Theorem 31.11 is also true tor the one-sided ~l-translormation, that ~s, when In(t) = 

= 0 lor t < O. 
Example: Let Ln (t) designate the nth Laguerre polynomial: 

L (t) = ~ ~ (e-' tn) = ~ (_ 1). n -' t n .. ( ) • 
n nl dtn £... " ,,1' 1'-0 

then, obviously, the functions 
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have the properties 
~ ~ 

f Iln{t) Idt < 00, and f Iln{t) 12dt < 00. 
o 0 

Moreover, these functions are orthogonal in CO, + 00), a fact which can readily 
be verified: 

~ ~ 

f In(t)/m(t) de = f e-'LfI(t)Lm(t)dt=O for n=l=m. 
o 0 

The corresponding ~I-transforms are given by: 

(s-tr 
Fn(s) = ( 1 )"+1 . 

s+2 
Hence, we conclude that the functions 

(iY--H" 
Fn(iy) = (. 1 )"+1 

~Y+2 

form an orthogonal system in the interval ( - 00, + 00). 
When deriving the Parseval formula for the ~-transformation, we started with 

the Parseval formula for the ~-transformation in form of formula (4). Using the 
other form (5), we now derive an important result for the ~-transformation of the 
product of original functions. The product was the one elementary combination 
of original functions for which we could not hitherto produce the corresponding 
~-transform. First we formulate the result for the ~II-transform. 

Theorem 31.12. When lor some given pair ot fixed real values, Xl and X2, we 
have: 

+~ +~ 

fe-It.' I h(t) I de < 00, fe-It.' I 12(t) I dt < 00, 
-~ -~ 

+~ +~ 

f e-2It·' I h (t) 12 dt < 00, fe-h.' 1/2(t) 12dt < 00; 
-~ -~ 

then, with Sl = Xl + iYl and S2 = X2 + iY2 ( - 00 < Yl,y2 < + 00), we find 

+~ +~ 

(9) f e-(s.+s.)t /l(t)/2(t)dt= 21n f F1(Sl+iy)F2{S2-iy)dy 
-~ 

and, with S1 + S2 = S, 
+~ %.+ ... 

f e-sl h(t) 12(t) dt = 2~i f FdO') F2(S - 0') dO' 
-d) '*'l-ico 

It.+'~ 

(10) = -21 . f F 1(s - 0') F 2 (0') dO' 'lor Sf s = Xl + x2 • nJ 
sa-leo 
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Under t1!e hypotheses of Theorem 31.12, the right hand sides of equation (10) 
define the "complex convolution" of F 1 (s) and F 2 (s), for which we use the symbol 
FlO F 2. With this notation, we present the above result as a theorem. 

Theorem 31.13. Suppose that the hypotheses of Theorem 31.12 are satisfied. Then 
~n{/1' f2} exists for the values of s on the verticalline ffis =X1 +X2; it is, for these s, 
equal to Fl 0 F2: 

Corresponding to the "Real Convolution Theorem" for the product of two 
image functions, we have the "Complex Convolution Theorem" for the product of 
two original functions. 

Proof: Once again introducing into formula (5) the substitutions which were 
used during the initial steps of the proof of Theorem 31.7, we obtain formula (9). 
Setting Sl+S2=S and Sl+iy=cr, so that S2-iY=S-Sl-iy=s-cr,wehave 
the first line of Eq. (10), although with the limits of integration Sl ± i 00 which 
may, however, be replaced by Xl ± ioo. The second line of Eq. (10) results when 
S2 + iy = cr is used instead of Sl + iy = cr. 

These Theorems become Theorems for the ~I-transformation, by the specifica
tions: /1 (t) = 0 and f2 (t) = 0 for t < O. In this case, all hypotheses are certainly 
satisfied for all Xl and x2larger than the fixed values of Theorem 31.12. Moreover, 
absolute convergence of ~I{/1} for ~s ;;;: Xl, and of ~I{I2} for ~s ~ X2, implies 
uniform convergence of FI(s) and of F2(S) towards zero in the respective right 
half-plane, as y ..... ± 00. Thus, one may, similarly as on p. 159, shift the path of 
integration to any abscissa x, provided the path remains in the region of absolute 
convergence of both functions; that is, for instance, as long as, in the first line 
of (10), x £ Xl and ~s - x ~ X2. This conclusion is summarized in the' following 
theorem: 

Theorem 31.14. When two real values Xl and X2 can be specified so that 
CD 

f e-:r1 ' 1/1 (t) I dt < 00, 

o 

CD 

f e-h1' I /1(t) ISdt < 00, 

o 

CD 

f e-"'~ _1/2(t) I dt < 00, 

o 

CD 

fe-h.' I/s(t) 12 dt < 00, 

o 

then, lor all s with ~s ;;;: Xl + X2, 

CD :r+im 
f e-sl /1(t)ls(t)dt = 2~i f Fl(cr)F2(S-cr)dcr(Xl;:;;; X~ 9is-xs) 
o $-iCD 

$+iCD 

(11) = 2~i f FI(s-cr)Fs(cr)dcr (Xs;:;;; x~ 9is-x1); 

s-ico 

that is, ~I{h . 12} exists for ~s ;;;: Xl + X2, and it is equal to the complex convolution 
F1 0 F2 whiIJh is explic[tly shown on the right hand side of (11). When only the 
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second line of the kypotheses is guaranteed, then (11) is valid for ffis > Xl + X2, 

whereby X can vary in the interval Xl < X < ffis - X2 or X2 < X < ffis - Xl respectively. 
The latter conclusion is true since, as on p. 212, by the Cauchy-Schwarz in

equality, convergence of 

co 

f e-2:r,' 1 f. (t) 12 dt (p = 1, 2) 
o 

implies convergence of 
co 

f e-~' If. (t) 1 dt for x> x,. 
o 

Example: The Gamma function r(s) is defined for ffis > 0 by 
co 

r(s) = S Z8-l e- III dz. 
o 

Replacement, in this formula, of the dummy variable of integration by a,z with 
a, > 0, yields: 

fco .-1 -~. d r(s} ( 0 m 0) z e z = ~ a> ,Oi S > . 
o 

Substitution, in the last representation, of e-t for z, produces the ~II-transform: 

+co 

f e-sl exp(-ae-') dt = ~!} . 
-co 

Defining 

we have 

and 

-CD 

All hypotheses of Theorem 31.12 are satisfied for all Xl > 0 and for all X2 > 0; 
consequently, by (10), 

X+JCO 

(12) T(s} 1 f T(a} T(s - a) 
( + )3 = -2' -U- s u da (al > 0, a2 > 0, 0 < X < m s) , 
al a2 :/u al aa 

%-ioo 

where Xl is replaced by x, and ffis = Xl + X2 may assume any value larger than x. 
Formula (12) provides a remarkable transcendental addition theorem for the func
tion r(s)/a,8. 
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32. The Concepts: Asymptotic Representation, 
Asymptotic Expansion 

In previous Chapters we demonstrated how the 2-transformation maps certain 
operations, like differentiation or convolution, in the original space to correspond
ing operations on the respective image functions in the image space. There is a 
further mapping property of a quite different kind which we now investigate. 
We shall show that the functional behaviour of some image function F (s) as 
s ~ 00 is determined by the functional behaviour of the corresponding original 
function f (t) near t = 0; one could say that the functional behaviour of f (t) near 
t = ° is mapped onto the functional behaviour of the 2-transform F (s) near s = 00. 

Likewise, the behaviour of f (t) as t ~ 00 is mapped onto the behaviour of F (s) 
near a certain finite point.1 

Asymptotic Representation 

First, we must explain the term "behaviour of a function in the neighbourhood 
of some fixed point". On the real line, or in the complex plane, we designate as 
neighbourhood U of some given, fixed point Zo an interval, or a region, which con
tains the given point Zo in its interior or on its boundary; the point Zo itself does 
not belong to the neighbourhood U.2 For instance: the interval ° < Z < 1 is a 
(one-dimensional) neighbourhood of Zo = 0, on the real line; the angular region 
I arcz I < n/2, ° < I z I < 1 is a (two-dimensional) neighbourhood of Zo = 0, in the 
complex plane; the angular region I arcz I < n/4, ° < I z I < 00 is a (two-dimen
sional) neighbo.urhood of Zo = 00, in the complex plane. The behaviour of some 
function q; (z) (which, in general, is a complicated function that is difficult to 
characterize) we shall describe in the neighbourhood U of some point Zo by some 
"comparison function" A tp (z) (A is a constant, and tp (z) is an elementary, well 
known and understood function) which asymptotically represents the given func
tion q;(z) as z tends, in U, towards zo, in the following sense: 

(1) lim !p(Z) = A 
'P(z) . 

We introduce the symbolic notation: 

!p(z) ,.., A tp(z) as z -+ Zo in U , 

1 The name "Abelian theorems" is used for those theorems which, for some given functional transform
ation, predict from the known functional behaviour of the original function the behaviour of the image 
function. This designation stems from the Abelian Continuity Theorem: Whenever the power series 

co 
'I'(z) = L Cnzn converges at z = 1 to the sum s, the limit lim'l'(z) exists and equals s. In this case, one 

n-O Z'~1 11 

predicts from the behaviour of the "original sequence" Cn, as n ... 00, lim L C. = s, the behaviour of 
the image function 'I'(z) near Z = 1. "~co.-o 

2 In topology, one defines as a neighbourhood of some given point Zo an open set which contains the 
point zoo Here, in the sequel, we shall frequently encounter the situation that Zo is a point of the boun
daryof U. Moreover, for our purpose, we must stipulate that the point Zo does not belong to the neigh
bourhood. 
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which reads: "cp (z) is asymptotically equal to A 1p (z) as z tends, in U, towards zo", 
or "cp(z) behaves like A1JI(z) as Z-4 Zo, in U". 

The definition (1) implies that 

(2) 
'P(Z) - A 1JI(z) 

1JI(z) ~O, 

that is, the "relative error" between cp and A 1p (z) goes towards zero as z approaches 
zoo Instead of (2), one could write 

(3) cp(z) = A 'I'(z) + 0(1p) as z -+ Zo, in U, 

that is, the difference between cp and A 1p is of smaller order (of magnitude) than 1p. 
The above shown expressions (1), (2), and (3) are equivalent; however, for appli
cations, expression (3) is often preferred. The function 1p (z) occurs in the denomi
nator; hence, we must presume 1p(z) =1= 0 for z in U. 

Asymptotic Expansion 

In practical applications one is frequently not satisfied with a single comparison 
function; instead, one seeks a sequence of comparison functions which represent 
the given function with increasing accuracy. Suppose that a first comparison func
tion 1po (z) of cp (z) is known: 

cp(z) ,.., 'I'o(z) , that is cp(z) = 1po(z) + o(1po) , 

then one may attempt to represent the "error" cp (z) - 1po (z) by a second com
parison function 1p1 (z) : 

or 
cp(z) - 'I'o(z) ,.., 'I'1(Z) , that is cp(z) -1po(z) = 'I'1(Z) + 0('1'1) 

CPo(z) = 'I'o(z) + 'I'1(Z) + 0(1p1) . 

In all these expressions, the order symbol 0 refers to the limiting process z -+ ZOo 

Proceeding in the above indicated manner, one generates a sequence of functions 
1p.(z). We may formally, and without concern regarding convergence, form the 

00 

series L 1p.(z). The partial sums of this series have the property: 
0=0 ,. 

(4) cp(z) = L 1p~(z) + 0(1p,.) as z ~ zo· 
.=0 

Eq. (4) implies: The difference between the given function cp(z) and the partial sum 
is of smaller order (of magnitude) than the last included element. 

00 

Wesay: cp(z) has the asymptotic expansion L1p.(z) as z -+ Zo, provided that (4) 
0=0 

is satisfied for n = 0, 1, 2, ... , and we write symbolically 
ex> 

cp(z) ~ L 1p.(z) as z ~ Zo • 
• _0 
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Rewriting the Eq. (4) in the following manner 
.. -1 

(5) tp(z) - L 1p.(Z) = 1p,,(z) + 0(1p .. ) , 
.~o 

we produce an equation of the form of (3). Thus, one may also characterize an 
asymptotic expansion by the property: The difference between the tunction and any 
partial sum behaves asymptotically like the next following element ot the asymptotic 
expansion: .. -1 

(6) tp(z) - L 1p,(z) '" 1pn(z) as z - Zo . 
• -0 

The expressions (4), (5), and (6) are equivalent. 
Powers are most often employed as comparison functions; consequently, in 

most cases, the asymptotic expansions have the form of power series. Near some 
fini te point zo, these are powers of (z - zo) with increasing exponents: 

co 

tp(z) I::::J L a.(z - zo)A. as z - Zo . 
• =0 

Near Z = 00, these are powers of z with decreasing exponents: 
co 

tp(z) I::::J L a~ as Z _ 00. 
>=0 Z 

The A. form a monotonically increasing sequence of real numbers, not necessarily 
integer-valued; a finite number of thp.se may be negative: 

Ao<AI <A2 <···_00. 

For some purposes one has to admit complex-valued A.; in this case we require: 
~U. < mA.+!. 

We call attention to the distinction between convergent series and asymptotic 
expansions. When dealing with a convergent series, we specify some fixed point z, 

n 
and we consider the partial sums I 1pv (z) and the limiting process n ..... 00. When 

.=0 
using an asymptotic expansion, we study some partial sum for a fixed n, and the 
limiting process z ..... zoo 

However, any power series with increasing' exponents: 
co 

tp(z) = L a.(z - zo) A. , Ao < Al < ... , 
.=0 

which converges absolutely3 for I z - Zo I ~ e is also an asymptotic expansion as 
z ..... zoo This is shown by 

I tp(z) - ~ a.(z - zo)Av I = I z - Zo 1~+1 !.=..t,..l a.(z - zo)Av-~+! I 
co 

~ I z - Zo IAn+! _L I a. eA.-An+! I = C I z - Zo IAn+! • 
• =n+l 

3 Attention is called to the remark in connection with Theorem 30.2. 
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The right hand side is o(lz - Zo I A,,) because of An+1 > An; hence, 
CD 

9'(z) I'>d L a.(z - zo)4p as z - Zo 
.-0 

in the neighbourhood 0 < I z - Zo I ~ e. Similarly, one can show that any ab
solutely converging power series with decreasing exponents is, in fact, an asymp
totic expansion as z -+ 00. 

33. Asymptotic Behaviour of the Image Function near Infinity 

The relationship between the functional behaviour of some original function and 
the behaviour of the corresponding image function as mentioned in Chapter 32, 
is expressed by 

Theorem 33.1. Suppose that the two real-valued lunctions I (t) and 9' (t), defined lor 
t > 0, are continuous in some interval 0 < t < T, where 9' (t) > O. Assume that the 
two corresponding f!.-translorms f!.{/} = F(s) and f!.{9'} = 4>(s) exist in respective 
hall-Planes. Then we may conclude: When 

1 (t) -- A 9' (t) as real-valued t -+ 0 (A an arbitrary, real constant) , 

then 

F(s) -- A 4>(s) as real-valued s -+ 00. 

Prool: In the sequel we restrict s to the real axis of the common half-plane of 
convergence of both f!.{/} and f!.{9'}. The function 119' is continuous in every inter
val 0 < t ~ IJ < T, and 9'(t) > 0; hence, we may invoke the first mean value 
theorem of integration, and we find: 

8 8 8 

f e-d I(t) de = f e-sl ~~~~ 9'(t) dt = ~~~) f e- sl 9'(t) dt, 
000 

where {} indicates some point with 0 < {} < IJ, which depends upon s. We define: 

8 8 

f e-st I(t) de = F1(s) , and f e-st 9'(t) dt = 4>1(s) , 
o 0 

hence 
Fds) f({}) 
~l(S) = 'P({}) • 

The property: I (t) 19' (t) -+ A as t -+ 0 indicates that for every given (; > 0 one can 
choose a fixed value IJ sufficiently small so that, for 0 < t < IJ, 

I f(t) I B 
'P(t) - A < '2' 



222 33. Asymptotic Behaviour of the Image Function near Infinity 

Consequently, we also have 

hence, for all s, 

(1) I Fl(S) -A I ~ 
(/Jl (s) < 2 • 

N ow we are going to show that for all large values of s the quotient F (s) / <f.i (s) 
differs from FI(s) /<f.i1 (s) by less than 8/2. Then the Theorem will be verified. 

Using the previously selected fixed value (l we define 

~ ~ 

f e-st t(t) dt = F2(S). and f e-st rp(t) dt = <f.i2(s). 
a a 

As s ~ 00 we have, by Theorem 23.2, 

co 

F2(S) = e-~s f e- n t(. + (l) iT = e-as 0(1) = o(e-aS) 
o 

and, similarly, 

The function rp (t) is continous and> ° on the interval (l/2 ~ t ~ (l; thus it has a 
minimum m > ° on this interval. For s > 0, we have: 

" 
q>I(s) ~ f e-st rp (t) dt ~ m ~ e- h 

a/2 
hence 

-as < 2 .m e = mt5 opI(s). 

The last expression enables us to replace the estimations for F 2 and for <f.i2 by 

Hence, one finds 

F(s) Ft{s) + F2(S) 
(/J (5) = (/Jl (5) + (/J2 (5) 

Ft{s) + 0 ((/Jl) 
(/Jl (5) + 0 ((/Jl) 

Ft{s) 
(/Jl (5) + 0(1) F ( ) 

"'--'---,-,.-- = ~ + o( 1) 
1 + 0(1) (/Jl (5) 

as s ~ 00. For every given 8 one can therefore find a So so that, for s ~ So, 

(2) I F(s) _ Fl(S) I ~ 
(/J (5) (/Jl (5) < 7 . 



33. Asymptotic Behaviour of the Image Function near Infinity 

Combining (1) with (2) we obtain: 

I F(s) - A I = I (F(S) - F1(S») + (FdS) - A) I 
I/> (s) I/> (S) 1/>1 (S) 1/>1 (S) 

for s ~ So. This implies that 

I F(s) _ F1 (S) I + I F1 (S) - A I < e 
;;i! I/> (S) 1/>1 (S) 1/>1 (S) 

F(s) A 
I/> (s) -+ 

as s ~ 00. 
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An essential prerequisite for the above proof lies in the condition that both 
I (t) and qJ (t) are real-valued functions,l and that s is restricted to real values. 
When I and qJ can assume complex values, or when s tends towards 00 in an 
angular region I arcs I ;£ "p < n/2, 2 then the above proof would not hold, and 
counter examples could be produced against a thus modified theorem.3 A theo
rem which admits the thus extended conditions requires additional hypotheses. 

Theorem 33.2. Suppose that the two lunctions I (t) and qJ (t) are real-valued or 
complex-valued lor t > O. Assume lurther that: 

I. qJ (t) =1= 0 and is continuous in some interval 0 < t ~ T; 
II. I (t) ,...", A qJ (t) as t ~ 0, A an arbitrary, complex constant; 

III. ~{/} = F (s) and ~{I qJ I} = ;p (s) exist in some hall-plane x> Xo > 0 (s = x + iy), 
which also implies the existence 01 ~{qJ} = cP(s) in the same hall-plane; 

IV. in the angular region ~, which is defined by I arcs I ;£ "p <- n/2, it is true that 

cP(x) 
II/> (siT < C when m s = x > Xl • 

1 The requirement that these functions have but one sign in the neighbourhood of t = 0 poses no lu,ther 
restriction, for these functions are continuous, and 'I'(t), and consequently also I(t), must not vanish. 

2 Angular regions of the stated type are suggested since, in general, in such regions F(s) .. 0; this latter 
statement being, in fact, a statement concerning asymptotic behaviour. 

3 We have, for instance, 

and 

I(t) = ~ eilt + 1 _ '1'(1) = _1_ eilt as t ... 0, 
Vnl v'ni 

F(s) = _1_ e-(l-i)y'2S + .!.., I/>(s) = _1_ e-(I-i)y'2S • 
Vs S Vs 

However, we cannot conclude that F(s) '" <1>(s), instead, we have F(s) '" lis as s ... 00, in I arcs I ~'I' 
< n12. 

The real part, and the imaginary part, of 'I'(t) and <1>(s) respectively, are employed as examples on several 
occasions (compare pp.24, 226) to demonstrate remarkable situations. Here, we cannot use these since 
(liV nt) cos lit and (liV "t) sin lit change sign in the neighbourhood of t = O. 
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Then 
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F(s) -- A fP (s), 

as s tends, two-dimensionally in ~, towards 00.4 

Proal: Hypothesis II implies, for t > 0, 

(3) I (t) = A fP (t) + 8 (t) fP (t), with 8 (t) ~ 0 as t ~ O. 

Hence, for every given 6 > 0, for all s with 9ts = x > Xo , 

using 

m , m 

F(s) = A f e-sl fP(t) dt + f e-" 8(t) fP(t) dt + f e-sl 8(t) q (I) dt 
o 0 , , 

= A fP (s) + f e-sl 8 (t) fP (t) dt + e-h 1(s) , 
o 

CD f e-H 8(r + 6) fP(r + 6) dT = 1(s). 
o 

Eq. (3) indicates that for every given 8 > 0, one can select a (now fixed) value 
6 < T, so that 18(t)1 < 8 for 0 < t;£ 6 < T. Thus, for 9ts = x > Xo, we may 
estimate as follows: , 

1 F(s) - A fP(s) 1 ~ 8 f e- c1 1 fP(t) 1 dt + e-h 11 (s) 1 ~ 8~(X) + e-h 1 1(s) ,. 
o 

The fact that 1 fP 1 > 0 for 0 < t ~ T implies that iP (x) > O. Hypothesis IV indi
cates that 1 fP (s) 1 =1= 0 for all s in ~ with 9ts = x > Xl. For thus restricted s, one 
can divide by fP(s): . 

(4) I F(s) I f)(x) -h 1 l(s) 1 
4) (s) - A ~ 8 14) (s) 1 + e 1 4) (s) 1 • 

The function 1 rp (t) 1 is continuous and > 0 on 6/2 ~ t ~ 6 < T; hence, 1 rp (t) I has 
a minimum m > 0 on that interval. For x > Xo > 0, it follows that 

CD , 

~(x) = fe-ttl IfP(t)\ dt ~ f e-d IfP(t) 1 dt;?; e-hm ~ 
o 'II 

4 This means: For every given Il > 0, there exists an R > 0, so that 

IF(S) AI 
~(s)- <Il 

for all s in W with 1 s 1 > R. The situation tp = 0 is permissible, in which case W degenerates into the real 
axis of the s-plane. 
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or 

(5) 
-/h< _2_ -

e = m!5 <P (x) . 

By Theorem 23.2, we can select an R > 0 so that5 

(6) I /(s) I < ";!5 e for all s in ~ with I s I > R. 

Moreover, we select R sufficiently large so that, for I s I > R in ~, x > Xo and 
x > Xl. Because of (5) and (6), (4) yields: 

I p'(s) I $(%) 
$(s) - A ~ 2 I $(s) I e 

or, because of Hypothesis IV, 

I=~;~ -AI~2Ce forallsin~withlsl>R. 

Thus, the Theorem is verified. 
The most common comparison function is cp (t) = t)., with A > -1. Applica

tion of Theorem 33.1 immediately yields the following property: 
Suppose that I (t) is a real-valued function, continuous in some neighbourhood 

of t = O. and that ~{/} = F(s) has a half-plane of convergence; then the fact: 
I(t) ",At)., with A> -1, as t-+O implies that F(s) ",r(A+l)/s).+l as real
valued s -+ 00. 

In order to make the conclusion useful for practical applications, we must ex
tend the result in two directions: Firstly, we must provide for the situation that 
s tends towards 00 in an angular region ~, and secondly, we must admit a com
plex-valued exponent A. To begin with, we verify quickly that ~{t).} converges 
(absolutely) for complex A with ~U > -1 in the half-plane Dis> 0, and that 
it is equal to r (A + 1) / SA +1. Indeed, with 

A = Al + iA2 and AI> -1, we have 

and the majorizing right hand side converges for Dis> 0; clearly, ~{tA} diverges 
for Dis < O. The evaluation of ~{tA} is similar to the one employed for real
valued A. 

Prior to the application of Theorem 33.2, we must demonstrate compliance 
with Hypothesis IV. Indeed, for cp(t) = tA, with A = Al + iA2, we find that 

iP(x) = f'" e- Itt t)" dt = r(At-±.!L 
%).,+1 

o 

5 WeJlOW realize why, especially, the angular region 2I3 was chosen where the conclusion F,...., A <ll is to 
be verified. 
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and, using s = r ei{}, 

hence, 

\ (/)(s) \ = I r(l + 1) I 
IsA+II 

I ro· + 1) I I r(l + 1) I 
yA.+l e A"q>-; 

In every angular region %3: I cp I ~ 'Ij.I, for fixed 'Ij.I < :n:/2,one observes that 

y 1 1 
-=--<--. 
x cosrp = cos!p' 

hence, 

Application of Theorem 33.2 yields the more general conclusion which is expressed 
In 

Theorem 33.3. Suppose that the function f(t) is real-valued or complex-valued for 
t> 0, and that ~{t} = F (s) has a half-plane 01 convergence. Then we conclude: When 

I(t) ,..., A tA as t ~ 0 (A an arbitrary, complex constant, A. complex, with ffiA. > -1), 

then r(l + 1) 
F(s),...,A Hl ' s 

as s tends two-dimensionally in the angular region %3: I arcs I ~ 'Ij.I < 11:/2 towards 00. 

For A. = 0, we obtain the most often used special case: 

Theorem 33.4. Suppose that ~{/} = F (s) exists, and that I (t) has the limit A when 
t ~ 0; then sF (s) has the same limit A when s ~ 00, in I arcs I ~ 'Ij.I < 11:/2. 

Theorem 33.4 can alternatively be phrased as follows: 

Theorem 33.5. Suppose we know that the limit I (0+) does exist, although its value is 
not known. Then, upon redefining I (t) lor large values 01 t in such a manner that ~{t} 
has a hall-plane 01 convergence, we find that 

1(0+) = lim s F(s). 

Obviously, Theorem 33.5 is particularly fruitful whenever I(t) is a complicated 
function, and F (s) is simple. 

The order" hypotheses - conclusion" of Theorem 33.4 cannot be inverted; that 
is, the existence of limsF (s) when s ~ 00, does not necessarily imply the existence 
of lim/(t) when t ~ o. This fact is demonstrated by the following example func~ 
tions which were already employed on p.24: 

o{ 1 cos 1 } L _- '2S cos 1/-2 
~-- - =-e v ·' V s ynt sin t \Is sin . 

Here, we have limsF(s) = 0; however, lim/(t) does not exist. We emphasize this 
" __ CO 
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fact, since in the technical literature the improper inversion of Theorem 33.4 is 
often used instead of the above presented, correct Theorem 33.5. 

After the power function, the most important comparison function is6 

For this function, we find the corresponding image function 

where 

d>(s) = r~~:/) [logs - J'(J. + 1)], 

r'cz) 
J'(z) = r(z) • 

This ~-transformation is obtained by differentiation of the formula 

CD f -sl tA de _ rCA + 1) 
e - s"+1 

o 

with respect to J.. In order to prepare for the application of Theorem 33.2, we 
would have to estimate 

1 CD 

4)(x) = -fe-Ill' t"'log t de + fe-Ill t"'log t dt 
o 1 

for large values of x, an involved undertaking.7 Thus, we restrain ourselves here 
to the conclusion indicated in Theorem 33.1. 

Theorem 33.6. Suppose that the real-valued function f (t) is continuous in the neigh
bourhood of t = 0, and that ~{t} = F (s) converges in a right half-plane. Then we 
conclude: When 

f(t),... - A t"logt as t-+-O (A an arbitrary real constant, J. > -1), 

then 
rCA + 1) 

F(s) ,... H1 [log s - J'(l + 1)] as real s -+- + 00. 
s 

In this case, one could replace the function d> (s) by the asymptotically equi
valent function r(J. + 1) logS/SA+l. 

Employing these Theorems one can arrive at far-reaching conclusions con
cerning asymptotic expansions of functions which can be represented as ~-trans
forms. 

8 The negative sign is included so that the function is positive in the neighbourhood of t = o. 
7 Using asymptotic approximations for the so-called Incomplete Gamma Function 

CD 

rcA + 1, xl = f e-" ,," tl", 
" one can demonstrate that condition IV of Theorem 33.2 is satisfied for every ., < n/2. 
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Asymptotic Expansion of Image Functions 

Here, we intend to develop asymptotic expansions of image functions F (s) as 
s ~ 00, given the asymptotic expansions of the corresponding original functions 
I (t) as t ~ O. In practical applications, the latter are often convergent power series, 
due to the mostly uncomplicated character of I(t). 

Theorem 33.7. Suppose that £{/} = F (s) has a hall-plane 01 convergence. When 
I (t) has the asymptotic expansion 

CD 

(7) 1ft) All ~c.tA" (-1<mAo<9u.1 <···) asrealt~O; 
.=0 

then F (s) has the asymptotic expansion 

(8) 
~ r(l. + 1) 

F(s) All '-' C, -A~ , 
... 0 s" 

as s tends two-dimensionally in the angular region I arcs I ~ 'IjJ < n/Z towards 00. 

Prool: By definition (3Z.6), hypothesis (7) implies that 

,,-1 

1ft) - ~ c. tA" - c" tAn as t ~ O . 
• _0 

The left hand side has a half-plane of convergence, hence, by Theorem 33.3, 

o {/(t) _ ~ tA,,} = F( )_ ~ r(l. + 1) r(l" + 1) 
...: '-' c, S '-' C. A" + 1 ,.., Cn A,. + 1 ' .=0 .=0 s s 

as s tends two-dimensionally m I arcs I ~ 'IjJ < n/Z towards 00. Thus, Theorem 33.7 
is verified. 

For applications, one often employs the following specialization: 

Theorem 33.8. Suppose that £{/} = F (s) has a hall-plane 01 convergence. When 
I (t) can be expressed in a neighbourhood 01 t = 0 by a convergent power series with Irac
tional exponents 01 the lorm 

1ft) = + t a. t"m (m a natural number), 
.=1 

then it lollows that 
CIO r( :) 

F(s) ~ La. 7ifil 
.=1 

as s tends two-dimensionally in I arcs I ~ 'IjJ < n/Z towards 00. 

In the special case that (7) converges, one can interpret Theorem 33.7 as fol
lows: A power series of I (t) must, in general, not be transformed term by term 
in the process of forming £{/} = F(s), although the series may converge for all 
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values of t. For instance, 

and ~{e-tS} converges for all s; however, the series obtained by term-wise trans
formation 

diverges for all s. Nevertheless, it is not useless, for it does provide an asymptotic 
expansion for F(s). In this particular case, we have 

CD 

F(s) = e(s/2). fe-c. dx, 

sl' 

a function closely related to the Gaussian error function. Thus, we have provided 
a first example of the application of Theorem 33.7. A further, important example 
is the following one: 

The Bessel function 

CD (-1)" (2Z )h+a, 
Ja(Z)=L 7Ilr(a+7I+1) ,,=0 

when multiplied by z-a, can be expressed, for mIX > - 1/2, by a finite Fourier 
integrals: 

+1 

(9) Y;; r(a + !) (~ r Ja(Z) = f eiU(l - X2)a-(1/2) dx. 
-1 

Using the substitutions: Z = is, x = t-1, one obtains 

2 

(10) Y; r(a + !) (i; fa e-S Ja(i s) = f e-SI [t(2 - t)]a-(1/2) dt, 
o 

which is a finite ~-integral; it converges for all values of s, thus representing an 
entire function. The original function can be expanded in the neighbourhood of 
the origin into a convergent power series; the exponents of the latter are complex
valued whenever IX is complex. This example demonstrates the need for the exten
sion of Theorems 33.3 and 33.7 to include complex exponents. First consider the 
expansion: 

[t(2 - t)]a-(1/2) = (2 t)a-(1/2) (1 _+r-(1/2) = (2 t)a-(1/2) ~ (a:-~) (- ~ r 
= 2a-(1/2) £. (-1)" (a ..... l) t,,+a-(1/2) 

p=O 2" 71 • 

8 S'tarting with {! {t" J" (t)} (compare p. 265), <?ne derives the presented formula by a technique similar to 
the one employed in the derivation of the formula for Jo shown on p. 57. 
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We have ffi(v + a -1/2) > -1, provided ffia > -1/2; hence, by Theorem 33.7, 

as s -+ 00, in I arcs I ;£ (n/2) - <5, with 0 < <5 < n/2. Substituting z = is and 
i = et (,,/2) yields: 

as z -+ 00, in <5 < arc z < n - <5. Since 

(a-i) = (-wr(v-a+i) 
\ v vI r(i-a) and 

1 cosan 
~~-.-=~--~=-----r(i + a) r(i-a) n 

we can rewrite the last statement as follows: 

(12) 

Thus, we master the asymptotic behaviour of ] a (z) in the upper half-plane, and 
also in the lower half-plane, since z-aJ a(Z) is an even function,by (9). That is, we 
have control over the asymptotic behaviour of] a (z) in the entire plane, with the 
exception of the real axis. On the real axis, the asymptotic expansion has another 
form; it will be derived on pp. 267-269. 

Employing Theorem 33.6 instead of Theorem 33.3, we can derive an analogue 
of Theorem 33.7: 

Theorem 33.9. Suppose that ~{/} = F (s) has a hall-plane 01 con"llergence. Whenever 
I (t) has the asymptotic expansion: 

ex> 

I(t) All -logt L c, tAp (-1 < Ao< Al < ... ) as real t-+O, ._0 
then the image lunction F (s) has the asymptotic expansion: 

F (s) All t c, r(A~:/) (log s - P(A, + 1)) as real s -+ 00, .-0 s 

where P(z) = F'(z)JF(z). 

Remark: The functions 

logs logs 1 
s1.+1' s1.+1' s11+1' s11+1.··· 

which occur in the expansion are of decreasing order (of magnitude) as s -+ 00. 
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In this Chapter we shall show that the functional behaviour of an original func
tion f (t) as t ~ 00, is reflected in the behaviour of the corresponding image func
tion F (s) = ~{t} near some finite point So. At any point So in the interior of the 
half-plane of convergence of F(s), or on the line of convergence of F(s), where the 
image function is holomorphic, the behaviour of F (s) is trivial in the sense that 
F (s) is continuous at So, and F(s) ~ F (so) as s ~ So. Moreover, the ~-integral 
cannot be called upon to provide information regarding the behaviour of F (s) near 
such points So outside the half-plane of convergence of F(s), where F(s) may 
happen to exist. Therefore, our interest concentrates upon singular points So on 
the line of convergence. 

We do not attempt here to develop an analogue to the general Theorem 33.1 
for any comparison function; instead, we shall restrict our investigations to power 
functions as comparison functions, in the style of the specialized Theorem 33.3. 

Theorem 34.1. Suppose that the real-valued or complex-valued function f (t) has 
the asymptotic property 

f(t) - A tA as t ~ 00 (A complex, 9U> -1). 

Then ~{f} = F (s) exists for 9'is > 0; it has, for A =1= 0, a singular point at s = 0, 
and it can be asymptotically represented in the following manner: 

F() A r(l + 1) 
s- SA+l' 

as s tends two-dimensionally in the angular region I arcs I ~ "p < n/2 towards zero. 

Proof: For t ~ 1, we may write 

f (t) = A tA + e (t) tA , 

where e (t) ~ 0 as t ~ 00. Consequently, ~{I} converges in the right half-plane 
9'is > O. Using some as yet unspecified T ~ 1, we have, for 9'is > 0, 

:r GO 
F(s) = i e-" f{t)dt + J e-" [A tA + e(t) tA] dt 

T GO GO 

= 1 e-" [f(t) - A tA] dt + i e-" AtAdt+ J e-B' e(t) tAdt 

T GO 
=A r~~::11) + I e-"[f(l) -AtA] dt + J e-"e(t) tAdt. 

For any given, arbitrarily small e > 0, we now select a fixed value T ~ 1, suf
ficiently large so that Ie (t) I ~ e for all t ~ T. Then we have, with A = Al + i A2, 
the estimations: 

I j e-" e(t) t"dt I ~ eJGOe-m •.• t.t.. dt < eJGOe- mN tA'dt = e r(i.l + 1) 
T - T 0 (IRS).t..+l 
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and 

I Ie-,' [f(t) -AtA] dt I ~ rlf(t) 1+ 1 A leA» dt = K, 

where K designates a constant which is independent of the value of s. Thus, one 
concludes, for 9ts > 0, that 

or 

I F(s) - A rv. + 1) I ~ K + e r(AI + 1) 
sA + 1 - (ms)A. + 1 

I SA+l I IS"+11 r(Al+1) IsA+11 
F(s) r(A+1) -A ~Klr(A+1)I+elr(A+1)1 (lrts),t.+1· 

With s = lsi &6 (I fJl < x/2) , we have 

hence 

Thus, one finds: 

I F() sA+ 1 _ A I < _~ Is l.t,+1 e-.t,6 + e r(AI + 1) (l!L)".+1 e-As6. 
s r(A + 1) Ir(A + 1)1 Ir(A + 1)1 Sh 

We restrict s to the angular region I arc s I = I fJ I ~ 1p < x/2, so that 

fls:_1_ 
\lts - costp 

and 

Also, we select (! sufficiently small so that, for I s I < (!, 

Isl".+1 < e 

because of AI> -1. Then, we estimate for all s =F 0 in the sector larcsl ~ 1p 

and lsi < (!: 

I F() sA + 1 _ A I ( K IAsI tp r(AI + 1) elAsI tp ) -. t 
s r(A+1) <e Ir(A+1)l e +lr(A+1)I(costp)A.+l -e cons. 

The last statement implies that 
SA+l 

F(s) r(A + 1) ~ A , 

as s tends two-dimensionally in I arcs I ~ 'IjJ towards zero. This is the conclusion 
of the Theorem. 

Using A = 0, we produce a specialized case of the above Theorem: 

Theorem 34.2. Suppose that the function I (t) has the limit A when t -+ 00. Then the 
corresponding image lunction F (s) = ~{/} e_xists lor 9ts > 0, it has a singular point 
at s = 0, and it can be asymptotically represented by: 

A 
F(s) -- - as s -+ 0, in I arcsj ~ 'IjJ < x/2. s 
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This specialized Theorem can be used to find the limit I ( 00). 

Theorem 34.3. When the limit oll(t) as t -+ ooexists, although its value is not 
known, then one can determine the value 01 the limit, using ~{t} = F (s), by means 01 

lim I (t) = lim s F(s) . 
1-+ a> .-+0 

This Theorem cannot be stated without the hypothesis regarding the existence of 
the limit I ( 00). That is, the order "hypothesis - conclusion" of Theorem 34.2, and 
therefore of Theorem 34.1, cannot be reversed. This fact is demonstrated by the 
counterexample 

I(t) == sint, 1 
F(s) == sa + 1 . 

For this example, limsF(s) = 0; however, I(t) does not have a limit as t -+ 00. 
8+0 

Conclusion: When sF(s) has the limit A as s -+0, then there are only two 
possibilities: Either I(t) has a limit as t -+ 00, which equals A, or else the limit 
of I (t) as t -+ 00 does not exist. 

In the above Theorems which employ powers as comparison functions for the 
original function, s = 0 is the singular point, near which the behaviour of the 
image function is determined by the behaviour of the original function as t -+ 00. 

Other singular points could be encountered, when other functions are used as 
comparison f~ctions of the original function. 

Theorem 34.4. When the original/.unction I(t) has the asymptotic property: 

I (t) fOoJ Ae Bot t A as t -+ 00 (A and So complex, mAo > -1), 

then ~{/} = F (s) exists lor ms > mso; it has, lor A =1= 0, a singular point at so, 
and F (s) can be asymptotically represented by: 

F(s) -A r(A + 1) , 
(s - So) A + 1 

as s tends two-dimensionally in the angular region I arc (s - so) I ~ 1jJ < :n12 to
wards So. 

The proof results when Theorem 34.1 is applied to ~{e-80 tl(tn =F(s + so). 
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35. The Asymptotic Behaviour of the Original Function 
near Infinity, when the Image Function has Singularities 

of Unique Character 

For most applicarions ot the ~-transformation, for instance when solving differen
tial equations, one first derives the image function F (s) of the sought solution f (t), 
then one needs to determine the corresponding original function. Often, however, 
it is not possible to express f (t) by means of known classical functions. Moreover, 
on many occasions one is less interested in the complete expression for f (t) than 
in the asymptotic behaviour of f (t) for large values of t; for instance, when inves
tigating the stability of systems. 

Thus, we are faced with the situation inverse to that of Chapter 34. The ques
tion is whether one could conclude from the (usually less complicated) behaviour 
of the image function F (s) to the asymptotic behaviour of the corresponding 
(often more complicated) original function f(t) as t -700. A simple interchange of 
hypothesis and conclusion of Theorem 34.1 cannot be used to accomplish our 
aim, for we have shown in connection with Theorem 34.3 that the inverse of 
Theorem 34.1 is, in fact, incorrect. 

The tl-integral expresses F(s) explicitly by f(t).This fact explains how the 
knowledge of the behaviour of f (t) enables us to predict the behaviour of F (s), 
and why it is more difficult to draw the inverse conclusion. Obviously, if we want 
to describe the behaviour of f (t) when the behaviour of F (s) is given, we shall 
need an explicit expression of f (t) involving F (s) : an inversion formula. The com
plex inversion formula is useful for the intended purpose; none of the other known 
inversion formulae has yielded results in this area of investigation. 

From Chapter 24, we recall the formula: 1 

a+ico 

f(t} = 2~i f ets F(s) ds, 
a-i OJ 

which represents the inverse of the tll- or the tln-transformation, provided certain 
hypotheses are satisfied. The abscissa a must be in the half-plane of holomorphy 
or in the strip of holomorphy respectively of F(s). However, we can also interpret 
this formula as a transformation, in its own rights, with the original function F (s) 
and the corresponding image function f(t), regardless of the origin of F(s) as a 
tll-transform or a tln-transform of f(t). To this new transformation we assign the 
operational symbol 93: 

4+<'" 
(1) 93{F} == 2~i f ets F(s) ds = f(t). 

a-jeo 

However, we shall retain the original meaning of 93{t} insofar as F (s) is presumed 
to be analytic in some strip which contains a. Thus, we exclude the case in which 
F (s) is defined only on the line ms = a; for this case, 93{f} would coincide with 

1 We shall omit the symbol V.P. hereafter. 
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the Fourier transformation, and we could not apply the method from the theory 
of functions which forms the principal technique in the subsequent considerations. 

Nothing essential concerning the behaviour of f(t) results as long as F(s) is 
investigated in the strip of holomorphy only. We shall demonstrate that the 
behaviour of f(t) as t -+ 00 depends upon the singularities of F(s). In particular, 
the prediction of the behaviour of f (t) as t -+ + 00 depends upon the behaviour of 
F (s) near its singular points to the left of the strip of holomorphy(as t -+ - 00, 

upon those to the right of this strip). We presume that, when shifting the line of 
integration to the left, one encounters isolated singular points. The singularities 
could be single-valued, or else be of multi-valued character; this is, indeed, an 
essential distinction: in the first case we can move the line of integration beyond 
the singular point, provided the residue is properly accounted for; in the second 
case, this is not possible and other techniques are required (see Chapters 36,37). 
For the remainder of this Chapter we restrict our investigation to the situation 
in which all singularities of F (s) are single-valued. 

We presume that the integral (1) converges, at least for t > T, and that F(s) 
is an analytic function in the half-plane ffis ~ a, with the possible exception of 
the poles IXO, lXI, 1X2, ••• with a > ffilXo > ffilXl > .... (We could also admit iso
lated, essential singular points; accordingly, the residues would be represented 
not by finite sums but by infinite series.) We select the real point Po between ffilXo 

and ffilXl and we form a rectangle which contains the point IXO using the vertical 
lines, through a and Po respectively, and the horizontal lines, at the heights + 00 

and -00. Then the integral of etBF(s) along the boundary of the rectangle in the 
positive sense, divided by 2 ni, is equal to the residue 1'0 (t) of etB F (s) at the point 
1X0. If the principal part of the Laurent expansion of F (s) at IXO has the form 

c(o) c(o) _1_+ ... + m. 
s -ao (s -ao)m. , 

then we have, by (26.5), 

( t ,m.-l ) 
l' (t) = c(O) + c(O) - + ... + CCO) ea.t 
o 1 2 11 mo (mo -1) 1 . 

Next, we assume that F(s) tends, uniformly with respect to ffis on the strip 
po ~ ffis ~ a, towards zero when s -+ 00. Thus, the values of the integrals along 
the horizontal sides tend towards zero when 00 -+ 00 (compare p. 159). The integral 
along the vertical line through a converges, by (1), towards f(t). It follows that 

fl.-I"" 

ro(t) =f(t) + 2~i f ets F(s)ds 
fl. + 100 

or, upon rearranging, 
fl.+ioo 

f (t) = 1'0 (t) + 2 ~ i f ets F(s) ds. 
fl.-' <tJ 

Iterating the above explained process, selecting the real points PI, P2, ... so that 

a > mao> Po > mal> PI > ... 



236 35. The Asymptotic Behaviour of the Original Function near Infinity 
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and assuming that F(s) tends, uniformly on every strip: p. ~ ffis ~ a, towards 
zero when s ~ .... 00, we ultimately find: 

(2) 

,. /1,.+.«> 

f(t) = L r.(t) + 2 ~ i f e" F(s) ds, ._0 /1,.-jco 

where r. (t) designates the residue of eB t F (s) at ex •• When the principal part of 
F(s) at ex. has the form: 

then one obtains 

( t tm.-1 ) l' (t) = cC.) + cCv) - + ... + c(') ea,.t 
• 1 2 11 m. (m, -1) I • 

All these steps and the results retrace those of pp.170, 171, where a convergent 
expansion was developed for t(t) . We had then to select hypotheses so that the 
"remainder integral" of (2) would, for fixed t, tend towards ° when n -+ 00. Here, 
we are satisfied with a less demanding hypothesis: The function t (t) has the asymp
totic expansion l:r.(t), provided the remainder integral is, for a fixed.n, of order 
o(rn(t)), that is, of order o (tmn-1e ant) as t -+ 00. This condition can be fulfilled 
by means of a simple hypothesis. We write 

/1,.+."" +«> 

2~i f etsP(s)ds= 21n e(1,.t f eit'YF(Pn+iy)dy. 
(1,.-. co -co 

The integral 

+w 

f eity F(Pn + i y) dy (w > ° arbitrary, although fixed) 
- w 
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tends, according to the Riemann-Lebesgue Lemma (Theorem 23.3), towards zero 
when t -+ 00. Now, we suppose that the integral 

+'" 
(3) f c"" F({1n + i y) dy 

-'" 

converges uniformly for t > T. Then, from the beginning, we may choose (jJ suf
ficiently large so that the integrals 

+co -QI 

f and f cit)' F({1n + i y) dy 
+.QI -'" 

are arbitrarily small for all t > T. Then the relation 

is valid, that is 

+'" f cu " F({1n + i y) dy -# 0 when t -+ 00, 

-Q) 

11 .. +.", 
_1 _ f cts F(s) ds = 0 (ePnt) . 
2 :n;i 

P .. -'''' 

Since (1n < mocn, this implies that the remainder integral is certainly of order 
o (tmn-1e ant) and, consequently, of order 0 (rn (t)). 

The requirement that the integral (3) converges uniformly for t > T is cer
tainly satisfied for an absolutely converging integral: 

+'" f IF({1n+ i y)ldy<oo. 

-'" 
However, for applications, the condition of uniform convergence is more advan
tageous, for even a simple integral like 

+co 

f cit)' -;. dy with 0 < A. ~ 1 (Y> 0) 
y y 

does not converge absolutely, although it does converge uniformly for t :;;;; T > O. 
Integration by parts yields: 

co 
< 1 1 + )" f d Y for t;:;; T > 0 , 
= r-;:t r y Hl 

w 
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and the last, majorizing expression is, independently of the value of t, arbitrarily 
small for sufficiently large values of w. 

The conclusions are summarized in 

Theorem 35.1. Suppose thatF (s) is analytic for ffis ;:::;; a, with the possible exception 
of the poles oc., with a > ffioco > ffiOCl > ... , where F (s) has the respective principal 
parts 

and that the integral 
a+i", 

93{F} = 2~i f ets F(s) ds = f(t) 
a-icc 

converges for t > T. Suppose, fu,rthermore, that real points p. with ffiOC.+l < p. < 
< ffi IX. can be found so that: 

1. on every strip p. ;:::;;- ffis ;:::;;- a, F (s) tends towards zero when s -?- 00, uniformly 
with regard to ffis; 

2. the integral 

converges uniformly for t > T. 
Then we conclude that 

+'" f eitYF(p.+iy)dy 

-'" 

The Hypotheses 1 and 2 are satisfied when, for instance, 

The notation was chosen to indicate that the constants C and Y may depend 
upon the value of p •. 

An application of Theorem 35.1 is shown on p. 297. 
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36. The Region of Convergence of the Complex Inversion Integral 
with Angular Path. 

The Holomorphy of the Represented Function 

We now admit singularities of F (s) to the left of a which are not all single-valued. 
In the case that the first encountered singularities to the left of a are single-valued, 
one can employ the previous method and thus separate from f(t) the corresponding 
residues, until one finally encounters a many-valued singularity. Thus, we may, 
without loss of generality, assume that in the first encountered singular point to 
the left of a, that is the singular point lXo with largest real part < a, F (s) has a many
valued singularity, perhaps of the character (s - lXo)l/2 or (s - IXO)-1/2 or log(s - lXo) 
or (s - IXO)1/210g (s - lXo) etc. Possibly, one may encounter more than one sin
gular point with identical largest real part < a; this particular situation will be 
discussed at the end of this Chapter. 

The technique of Chapter 35 cannot here be employed, for the application of 
Cauchy's residue theorem requires single-valuedness of the function. When search

. ing for another method, and thereby recalling the relative ease with which the 
asymptotic expansion of the \2-integral could be developed in Chapter 33, one 
may ask whether the integral (35.1) could be reduced to ~-integrals, perhaps by 
splitting it into two integrals, one along the ray from a to (a + i 00), the other 
from a to (a - i 00). However, as long as we employ vertical rays as paths of 
integration we shall not produce ~-integrals, instead we obtain ~-integrals: 

a+i~ ~ 

2 ~ z f ets F(s)ds = 21
n eal f eill' F(a + i y) dy . 

a 0 

The only asymptotic property concerning ~-integrals which is at our disposal is 
expressed in the Riemann-Lebesgue Lemma, when this lemma is extended to 
admit unbounded intervals of integration (compare p. 237); this lemma indicates 
that, in case of uniform convergence for large t, the ~-integral is of order 0 (1); 
it follows that integral (35.1) is of order 0 (eat). 

The situation is essentially altered when the vertical ray can be replaced by one 
which is inclined towards the left; such a move is permissible by Cauchy's theorem, 
provided certain conditions are satisfied. Along the inclined ray: 

we have 

. n 
s = a -I- r e'''' with "2 < 1jl < n, 

f ets F(s)ds = etJt j etrei'" F(a-l- r e'''') ei ", dr 
o 

~ 

t . I t .(",-,.) , 
= etJ e'''' e- e r F(a -I- r e'''') dr. 

o 

The last integral is an ordinary ~-integral which employs r as its dummy variable 
of integration, and tei (1jJ-Tt) assumes the position of the usual parameter s. Thus, 
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one could invoke the Theorems of Chapter 33 and, upon applying these to the 
integral along the inclined ray, one could produce an asymptotic expansion for 
this integral. Analogous considerations apply to the integral along the other ray 
and, consequently, to the entire integral (35.1). 

a 

Figure 30 

In the remarks following Theorem 37.1, yve shall realize that a useful expansion 
can be obtained only after the path of integration of (35.1) has been moved from 
the quite arbitrary, holomorphic point a to the singular point lXo where then the 
two vertical rays are inclined to the left. The function F (s) may.fail to be inte
grable at 1X0, therefore we replace the path of integration near lXo by a portion 
of a circle about lXo (see Fig. 30). The new path of integration l is designated by~. 
We realize that the move of the straight line path of integration through a into 
the new, angular path is certainly permissible, provided F (s) converges towards 0 
when s tends two-dimensionally between the old and the new path towards 00. 

This conclusion can easily be demonstrated by the following process: We insert 
between the old and the new path, above and beneath lXo, connecting curves, each 
composed of a portion of a circle centred at lXo and a straight line section, as shown 
in Fig. 30. We apply Cauchy's theorem to the closed curve, and we consider the 
situation when the connecting curves are moved upwards and downwards respec
tively. The contribution to the integral along these connecting curves vanishes in 
the limit; for the above stipulated condition, this is obviously true along the 
bounded straight line sections; for the circular portions, it follows from Theo
rem 25.1. 

Let us then assume that we managed i~deed to move the path of integration 

1 We encountered the same contour during the discussion of the , Hankel formula on pp. 165-168. 
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of (35.1) from the straight line through a to the contour m3 with an half-angle of 
opening "P, with nl2 < "P ~ n.2 Henceforth we shall consider the integral: 

(1) Z!i leta F(s) ds = t(t). 

The integral (1) defines a correspondence between t and F; we shall interpret it 
as another transformation in its own right which we shall call the m3-transforma
tion: m {F(s)} = t(t). 

Our actual aim is to deduce the asymptotic behaviour of t (t) from the asymp
totic behaviour of F(s). However, before we can pursue this aim, we must first 
investigate some fundamental properties of the new transformation. 

Although we shall encounter in the subsequent applications situations as out
lined above, that is, F (s) is a ~-transform and thus necessarily an analytic function, 
we require here merely that F (s) is integrable on every finite portion of the con
tour m3 (that is, locally integrable), and that the integral m3{F} converges for at 
least one real or complex value t. 

It suffices to consider in the subsequent investigation the special case 0(0 = 0, 
for the substitution s = 0(0 + a in (1) yields 

(2) Z!i eliot Seta F(ao + a) da = t(t); 

the integral (2) is to be evaluated along a path of integration which is congruent 
to m3, having its centre not at 0(0 but at a = O. Knowing the properties of the 
integral (2), one can deduce the properties of the integral (1). 

Thus, we are concerned with the transformation 

(3) m {F} == -21 . Seta F(s) ds = t(t), 
10 j!ll 

whereby m3 is an angular contour which is composed of the circular arc S{ having 
centre 0 and radius e, and two rays through 0 at the respective angles ± "P, nl2 < 
< "P ~ n, as shown in Fig. 31 (p.242). 

We shall observe that m3{F}, in contrast to the inversion integral ~ with a 
straight path of integration, converges not only for real-valued t but in a two
dimensional region of the complex t-plane; we want to discover this region. 

The contribution to the contour integral, along the circular arc S{ of finite length 
has a finite value for all complex t. The contribution along the ray in the + "P-direc
tion, where s = ret'P with e ~ r < 00, is given by: 

<Xl ('1') <Xl 

Seta F(s) ds = S etrei'P F(ret'P) et'P dr 

(4) (lei'P II 

<Xl 

= et'P S e-te-i(n-'P)rF(re('P) dr. 

II 

2 For 'I' = n, we must locate the two horizontal rays on the opposite flanks of a branch cut. 
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Fi~ure 31 

This is a ~-integral with the dummy variable of integration r, the original func
tion F (ret'll) and the image variable te-H :n.-lp). It converges, if anywhere, in some 
half-plane ~(te-t(,,-lp») > th. The inner normal of this half-plane forms the angle 
(n - tp) with the positive real axis, as shown in Fig. 32. The contribution along 
the ray in the -tp-direction, where s = re-tlp with (! ;£' r < 00, is given by 

00(-'1') 00 f eta F(s) as = f etre-itp F(re- ttp) e- ttp dr 

(5) lIe- itp Q 

00 

= e-ttp f e-tei(n-tp)r F(re- ttp) dr . 

Q 

This integral converges, if anywhere, in some half-plane ~(tei (,,-11'») > {32. The 
inner normal of this half-plane forms the angle -(n - tp) = (tp - n) with the 
positive real axis. The entire integral (3) which is composed of the contribution 
along the circular arc St plus (4) less (5) converges in the intersection of both half
planes of convergence. When to designates the common point of the respective 
lines of convergence, then the integral (3) converges in the angular region with 
apex to, horizontal bisector, and half-angle tp - (n/2), as shown in Fig. 32. 

The larger tp, the larger the angular region of convergence. For tp = n, its half
angle is n/2; the region of convergence is a right half-plane. (For the integral 93, 
we find tp = n/2; the corresponding region of convergence degenerates into a ray.) 

When F (s) designates the ~-transform of a function t (t) which is real-valued for 
all real t, then F (5) = F(s). Conversely, when F (s) has this property, then one can 
easily demonstrate for the ~-transformation that the contribution (4) yields for 
t a value which is the conjugate of the contribution of (5) for t; similarly the con
tribution (5) for t is the conjugate of the contribution (4) for t. This implies that 
the half-planes of convergence of the respective contributions (4) and (5) are 
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conjugates, that is /h = /h and the difference between the two integrals for t is 
the conjugate of the difference for t. Analogous considerations hold for the inte
grals along the upper and lower halves of the circular arc st We summarize thus: 
For a function F(s) with the property F(s) = F(s), the transform m3{F} assumes 
conjugate values for conjugate values of t; in particular, for real t, m3{F} = t (t) 
is real-valued. The region of convergence is symmetric with respect to the real 
axis. 

Figure 32 

The ~-integrals (4) and (5), evaluated along the rays in the respective direc
tions ±tp, represent, by Theorem 6.1, analytic functions in the respective regions 
of convergence, and may be differentiated under the integral sign. This conclusion 
is also true for the integral along the circular arc St, for we may interchange summa
tion and integration in: J etlF(s)ds = J F(S)};o~~ snds, 

since the power series converges, for a fixed t, uniformly in s on St, and since F (s) 
is Riemann integrable on St and consequently bounded3 : 

r etBF(s)ds = 1:..; r F(s)snds. 
~ n=on. ~ 

The power series in t may be differentiated term by term: 

- etBF(s)ds = " -- F(s)snds = ,,- F(s)sn+ 1ds d J 00 t,,-l J 00 tn J 
dt 1=1 (n -1) I n~o nl 

3 For a Lebesgue·integrable F(s) one could also argue the legality of the interchange by Lemma 2 of 
Chapter 30. 
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Once again, using the same arguments as above, we can interchange summation 
and integration, hence: 

d J J ~ (t5)" S - etBF(s)ds = F(s)s £.... -I-ds = etBsF(s)ds. 
dt n=O n. it 

It follows that the integral over st may be differentiated under the integral sign 
for all complex t and represents, therefore, an entire function. 

The above process may be iterated. This shows that, in fact, I (t) represented 
by m3{ F} in the angular region of convergence is analytic in this region, and that 
the derivatives have the form: 

(6) 1(1I)(t) = 2!i ~ etB s1l F(s)ds. 

The conclusions thus obtained can now be generalized by means of formula (2) 
to the case that the centre of the contour m3 is no longer restrained to the origin; 
instead it can be any point 0:0. Hence, we can formulate the following theorem. 

Theorem 36.1. Suppose that m3 represents the angular contour with centre 0:0 and 
the hall-angle of opening '/fl, with n/2 < '/fl ~ n, that F(s) is locally integrable on m3, 
and that the integral S etsF(s)ds converges lor at least one real or complex value 01 t. 

:ill 
Then it follows that this integral converges in an angular region of the complex t-plane 
with horizontal bisector and hall-angle 01 opening '/fl - n/2; i.e., in I arc (t - to) I < 
< 1JJ - n/2. The by means 01 the m3-translormation: 

(7) m{F} ==-21 . Set&F(s)ds =/(t) 
10 !1l! 

generated function f (t) represents in the angular region 01 convergence an analytic 
function the derivatives 01 which may be obtained by differentiation under the integral 
sign. In particular, when 0:0 is real and when F (5) = F (s), then the bisector 01 the 
angular region 01 convergence coincides with the real axis, and I(t) is real-valued for 
real t. 

The m3-transform, the complex inversion integral with angular contour, has 
properties entirely different from those of the m-transform, the inversion integral 
with a straight path of integration. The latter is actually a ~-integral, and it may, 
for real t, represent "arbitrary" functions, for instance functions with jumps.(In
deed, according to Theorem 24.3, it represents all functions which are locally of 
bounded variation and have an absolutely converging ~II~integral.) However, in 
general, we cannot differentiate the m-transform under the integral sign. 

This is readily demonstrated by the following example: 

(8) 
1 a+ioo 

--. S etB _5 - ds = cost 
27< Z 52 + 1 (t > 0, a > 0). 

a-'lOCl 

Interchange of differentiation and integration does not produce the known repre
sentation of -sint: 

1 a+too -1 
--. S ets--ds = -sint· 27< Z 52 + 1 . ' 

a-ico 
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instead, one obtains the diverging integral4 

(9) 

By contrast, the ~-integral can only represent those functions which are 
analytic in certain angular regions with horizontal bisectors. However, it offers the 
advantageous property that it can be differentiated under the integral sign, and 
it enables us to represent analytic functions which cannot be generated by the 
m-transformation. For instance, we have with ClO = 0, by (25.6), 

(10) for arbitrary complex A.; 

this formula, when considered as the inversion of ~{f-l/r(A.)} = S-A with a 
straight line path of integration is valid only for ffiA. > O. In Chapter 25 we de
rived the formula (10) for arbitrary "p with 7&/2 < "p ~ 7&, only for t > o. Theo
rem 36.1 shows that formula (10) is valid in the angular region I arct I < "p - 7&/2. 
Selecting the largest permissible value "p = 7&, we confirm it for I arct I < 7&/2, 
that is in the right half-plane. 

s-plane 

Figure 33a Figure 33b 

In Chapter 37 we shall use integrals of the form (7) with a contour ~ rotated 
about ClO so that its bisector is not horizontal but forms some f;j.rbitraryangle f} 

with the real axis, as shown in Fig. 33a. Once again it suffices to use ClO = o. 

4 We find the explanation for this in the observation that the integral (8) produces, for t < 0, the value 
zero (compare Theorem 24.4); the represented function, considered on the entire real axis, ought to be 
written cost· 1«t). At t = 0 the latter has a jump of magnitude one. Consequently, it cannot have a 
conventional derivative. When looked upon as a distribution it has the di"stribution-derivative 
- sint . u(l) + 6 (t). The 2-transform of the latter is 

1 S2 

- s2+1 +1= s2+1· 

This is the function encountered in (9). 
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Naturally we inherit the conclusion that the integral along the circular arc jt con
verges for all t, thus producing an entire function. The ray of ru3, which forms 
the angle 1p with the bisector of ru3, now forms the angle 1p + {} with the positive 
real axis; hence, we find, instead of (4), 

GO 

(11) ef(9'+8) J e-,,-i("-9'-8)r F(reH 9' + 8») dr. 
Q 

Integral (11) converges in some half-plane m(te-i(n-9'-I)) > {h; this is a half
plane, the inner normal of which forms the angle n - 1p - {} with the positive 
real axis. The other ray of ru3 now forms the angle -1p + {} = - (1p - {}) with the 
positive real axis; hence, we obtain instead of (5), 

co 

(12) e-(IJ'-8) J e-'ei ("-IJ'+8)r F(re-t(IJ'-8») dr. 
Q 

Integral (12) converges in some half-plane m(tei(n-1P+8») > {J2; the inner normal 
of this half-plane forms the angle - (n - 1p + {}) = 1p - n - {} with the positive 
real axis. The integral along the entire, rotated angular contour converges in the 
intersection of these half-planes; this is, as seen in Fig. 33b, an angular region 
with the half-angle of opening 1p - nl2 and a bisector which forms the angle - {} 
with the positive real axis. Observe that Fig. 33a is obtained from Fig. 31 by a 
rotation through the angle {} in the positive sense, whilst the corresponding Fig. 33b 
resembles Fig. 32 when rotated through the angle {} in the negative sense. This 
counter-behaviour clearly follows from the fact that in the exponential function 
of the integrand of (7) we encounter the product ts; hence, the behaviour of con
vergence of the integral remains unaltered when every increase of arcs (corres
ponding to a rotation of the path of integration) is counteracted by a decrease of 
equal magnitUde of arct (corresponding to a rotation of the region of convergence 
in the opposite sense). 

Theorem 36.2. Let ru3 designate an angular contour having its centre at ao, and the 
half-angle of opening 1p, with nl2 < 1p ~ n. The bisector of ru3 forms the angle {} 
with the positive real axis. Suppose that F (s) is locally integrable on ru3. Then we 
conclude that f eta F (s) ds converges in an angular region of the complex t-plane which 

m 
has the half-angle of opening 1p - nl2, and a bisector which forms the angle - {} with 
the positive real axis. The ru3-transformation of the form (7) generates the function 
f (t) which is analytic in the region of convergence; the derivatives of f (t) are obtained 
by differentiation of (7) under the integral sign. 

When we use, with formula (10), an angular contour of the type described in 
Theorem 36.2, then the apex of the angular region of convergence in the t-plane 
is at t = 0; this is a consequence of the fact that the respective half-planes of 
convergence of the integrals along the rays of ru3 are obviously bounded by 
straight lines through the origin. Upon substituting s = s' - 01:0 in (10), the path 
of integration in the s' -plane is an angula.r contour having its centre at 01:0; with 
this ru3 we obtain: 

--. et (. -"0) (s' - ao)-A ds' = --. 1 r ' tA-l 
2~. ' r(A.) 
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Thus, we produce the following generalization of (10): 
The transformation 

(13) (A arbitrary, complex5) 

is valid provided the following conditions are satisfied: 
In the s-plane (see Fig. 34 a) : The angular contour m3 has its centre at s = ()Co. 

Its half-angle of opening is 1p, with 'Te/2 < 1p ~ 'Te. The bisector of 
the contour forms the angle {} with the positive real axis. 

In thet-plane (see Fig. 34b) : t is an interior point of the angular region which 
has its apex .at t = o. The bisector of this region forms the angle 
- {} with the positive real axis. Its half-angle of opening is 1p - 'Te/2. 

s-plane (-plane 

Figure 34 a Figure 34 b 

The Case that F (s) is the \!.-translorm 01 1 (t) 

For the previous Theorems we merely required that F (s) is defined and locally 
integrable on the angular contour m3. In applications, F (s) often is the \!.-trans
form of some I(t); that is, it is an analytic function in a right half-plane, and the 
933-transform results from the complex inversion formula with a straight line path 
of integration in the manner explained at the beginning of this Chapter. In order 
that the alteration of the straight line path of integration into an angular contour 
may be permissible, I(t) must be analytic by Theorem 36.1, in an angular region 
with horizontal bisector. The for the \!.-transformation needed real axis t ~ 0 
certainly belongs to the angular region beyond a certain point T; however, it need 
not be entirely in this region, as shown in Fig. 35. For this latter situation, the 
function 1 (t) is representable by a m3-transform of its \!.-transform F (s) only for 
t > T; the values of 1 (t) for 0 ~ t ~ T are not included. The following simple 
example will help to elucidate the situation : The step function 1 (t) "'" U (t - 1) 
has the \!.-transform: 

e-4 
£{u(t - 1)} =-

s 
for Sis-> o. 

5 For A = 0, -1, - 2, ... , the right hand side is interpreted as zero (cf the remark to formula (25.6)). 
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According to the inversion formula we find6 

1 for t> 1 
1 

a+ioo 

(14) S 
e-3 1 for t = 1 (a> 0). 2,.d V.P. ets-ds = 
s ;Z 

a-ico 
0 for t < 1 

The function l/s converges uniformly in every direction towards zero, when s -+- 00; 
consequently, we might firstly remove in the integral 

S e(t -1), ! ds 

the path of integration to the imaginary axis which we have to replace in the 
neighbourhood of s = 0 by a semicircle. By Theorem 25.1, we replace the straight 
line path of integration by an angular contour ~ having the centre 0 and a half
angle of opening "P, with arbitrary "P in n/2 < "P ;:;;; n; this can be done only for 
t -1> 0, since t of Theorem 25.1 must here be replaced by t -1.7 Thus, we find: 

(15) { e-.} 21\-s-=1 for t > 1. 

This latter expression is actually correct for all t in the angular region I arc (t -1) I < 
< "P - n/2. For 0 ~ t < 1, we cannot alter the straight line path of integration 
into an angular contour. Obviously, the ~-integral diverges for these values of t.s 

I-plane 

o 

Figure 35 

This example demonstrates what we must expect in view of the above develop
ment: The function u (t -1) can, for t > 1, be embedded into the function 1 which 
is analytic in the entire plane; for t > 1 it may be represented as the ~-trans
form of its ~-transform. Along the entire positive axis t ~ 0, the function u (t -1) 

6 The designation V.P. is needed for t = 1 only; for t ~ 1, the integral converges in the conventional 
sense. 

7 In the left half-plane, r'ls does not converge to zero-when s ~ 00; it is for this reason that r' must be 
joined with e t • to form e(t-l)., otherwise Theorem 25.1 could not be invoked. 

8 When interpreting the W-integral in a manner analogous to the one employed with (14},as V.P., then 
it does converge also for t = 1, yielding the value 1/2. 
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cannot be identical to an analytic function; hence, we cannot represent it as a 
~-transform. A similar, more complicated example will be explained on p. 299. 

Any function t (t), defined for t ~ 0, which does not coincide beyond some 
fixed point T, in an angular region with an analytic function, cannot be represented 
by a ~-transform . This is illustrated by the square wave function which is de
fined by: t(t) =0 for 2n;£t<2n+1, and t(t) =1 for 2n+1 ;£ t<2n+2 
(n = 0, 1, 2, ... ). Its ~-transform is given by F (s) = l/[s (1 + eB)]; the latter has 
poles at s = 0, s = (2k + 1) ni (k = 0, ±1, ± 2, . .. ). Indeed, these poles prevent 
a deformation of the vertical straight line path of integration into an angular 
contour~. 

a/ o 

a 

Figure 36 

At the onset of this Chapter, we presumed that when moving the vertical path 
of integration to the left of a, exactly one many-valued singularity with maximum 
real part would be encountered. We now admit the situation that F (s) has a finite 
number of singular points with identical, largest real part, say OCo, OCI, and OC2 as 
shown in Fig. 36. We now presume that the behaviour of F (s) near infinity is such 
that the straight line path of integration through a may be replaced by an angular 
contour ~ as shown in Fig. 36, at least for sufficiently large values t > T. The 
contributions to the ~-transform along the several portions of circles and along 
the intermediate straight lines converge for all t; for the contributions along the 
rays at ± "P respectively, the conclusions of Theorem 36.1remain valid. Moreover, 
we may replace the straight line connections betwe~n the portions of circles by 
arbitrary, conveniently selected curves of finite length on which F(s) is defined 
and integrable; we shall resort to such modifications in the sequel when applying 
the Theorem in Chapter 37. 
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37. The Asymptotic Behaviour of an Original Function 
near Infinity, when its Image Function is Many-Valued 

at the Singular Point with Largest Real Part 

Having expounded the properties of the m3-transformation, we now return to the 
task formulated at the beginning of Chapter 36. Some function I(t) is given; its 
~-transform F (s) has a many-valued singularity at its singular point OCo with largest 
real part. Let us assume that I (t) can be reproduced by means of the m3-transforma
tion of F (s) employing an angular contour centred at oco. Our objective is to deduce 
the asymptotic properties of I(t) as t -+ 00 from the behaviour of F(s) near oco. 

Once again, we presume here that oco = 0, later on we can extend our conclusions 
to any arbitrarily located oco, by means of formula (36.2). 

Initially, we presume that the singularity of F (s) at s = 0 is of such a nature 
that F (s) may be represented by an asymptotic expansion of the form 

co 

(1) F(s) ~ L c. SAp (-1 < mAo < mAl < ... ) 
.=0 

in some sector I arcs I ~ 1Jl, with n/2 < 1Jl ~ n. (In practical applications, we 
shall most often find F (s) representable by an absolute1y converging series of the 
indicated form in a surrounding neighbourhood of s = 0.) In this case that all 
ffi A. > - 1, we may dispense with the circular arc of m3 and we employ a simplified 

Figure 37 

contour through s = 0 as shown in Fig. 37. This simplification is permissible accord
ing to the following argumentation. The integral J etBsAo ds, evaluated along the 
circular arc: s = eei~, -1Jl ~ f} ~ + 1Jl, can be written, with AO = fl + i'll, as follows: 

+'1' f etq.il} el'+iv ei(l'+i.)/) e eil} i df}; 

-'I' 

the absolute value of this integral is bounded above by 

+'1' f etllcosl} el'+1 e-·I} df} ~ et/l el'+1 el'I'I' 21Jl . 
-'I' 
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It follows that the integral tends towards zero when (! ~ 0, since It + 1> 0. We 
observe, furthermore, that F(s) = cQsAo + O(SAO); thus, the integral f etBF(s)ds, 
evaluated along the circular are, also tends towards zero, when (! ~ 0. 

Thus, we may write t(t), using an easily understandable notation, 

1'" ('1') '" (-'1') l 
t(t) = 2~i f etsF(s)ds- f etsF(s) ds . 

For the first integral, we obtain, by (36.4), now using (! = 0, 

00('1') 00 

(2) f etsF(s) ds = e''P f e-tei('P-",l'F(r ei'P) dr. 
o 0 

We can apply Theorem 33.7 to the thus generated ~-integral. According to (1), 
we have: 

00 

F(rei'P) ""=i L c" e'Av'P rAp (-1 < mAo < mAl < ... ) for r --* 0, ._0 
hence 

as tei('P-"'l tends two-dimensionally in the angular region 

(<5 arbitrarily small) towards 00. This implies that 

or, equivalently, 

In an analogous manner one obtains for the second integral, by (36.5), 

00 (-'Pl 00 

(3) f etsF(s) ds = e-i'P f e-t.ei(n-'Pl, F(re-i'P) dr; 
o 0 

hence, since 
'" F(r e-i'P) ""=i L c. e-iAv'P rAv as r ~ 0, 

.=0 
by Theorem 33.7, 

00 (-'P) ex> 

f . L 'A r(A. + 1) _ L'" -,,,,(.<,,+1) r(A p + 1) 
ehD(s) ds ~ e-''P C. e-··'P ( .( »)A +1- - c •. e '+1 

.r ~ te''''-'P • t n " o v~o .=0 
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as tei(,,-V') tends in I arc (tei(n-V'») I ~ n/2 - ~ or, equivalently, as t tends in 

3 11, 

-"2 n + V' + (I;;;; arct;;;; -"2 + V' - (I 

two-dimensionally towards 00. 

The angular regions of the asymptotic representations of (2) and of (3) are 
portions of the respective half-planes: 

'It 3 
2 - V' < arct < 2" - '1'. and 

3 'It 
- 2" + V' < arct < - 2 + V' 

as shown in Fig. 38. The boundary lines of these half-planes are parallel to the 
lines of convergence of the integrals (2) and (3) which were determined in Chapter 
36, and shown in Fig. 32. This is elucidated by the angles of direction entered in 
Fig. 38. 

Terms of the asymptotic expansions of the respective integrals (2) and (3), 
having the same index 'II, are of the same order of magnitude; thus, one may sub
tract the two expansions term by term, l and in this manner one finds: 

1 ~ . (1 r(A. + 1) 
= - ~ c, sm nil. + 1) -A~ • 

11, .=0 t • 

Using the well known expression: 

sin n(A, + 1) = r(A, + 1) r(- A,) , 

with the understanding that, for A. = 0, 1, 2, ... , 
1 

r(- A,) = 0, 

we finally obtain 

(4) 

This expression is valid provided t tends two-dimensionally in the intersection of 
both regions where the respective expansions are valid, that is in 

(5) 

towards 00. The larger an angle V' we can select in the change from the 93-trans
formation to the ~-transformation, the larger is this angular region; for the limit
ing situation V' = n, the angular region approaches a half-plane. 

1 The terms of an asymptotic expansion must be orderd by decreasing order of magnitude; it is for this 
reason that two asymptotic expansions, in general, cannot simply be superimposed term by term. 
More discussion concerning this is presented on p. 256. 
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A~; 

Figure 38 

The angular region 

I arct I < - ~ + '1', 

which is arbitrarily closely approached by the region (5) is obtained by a parallel 
translation of the angular region of convergence, shifting the apex to of the latter 
towards o. The relative position shown in Fig. 38 is but one of four possibilities 
illustrated by Fig. 39. For everyone of these situations we observe that any ray 
through the origin inside of the angular region (6) is, at least from some point 
onwards, inside the angular region of convergence, where I (t) is defined. This suf
fices, since the asymptotic expansion refers only to large values of I t I . 

~t~~ --o 

Figure 39 

We now relax the hypothesis which requires that mA. > -1 in the expansion 
of F (s). Suppose that 

and consider the new function 

FI (s) = F (s) - Co SAo - C1 SA, - • : • - Cm sAm. 

Obviously, we have 
CD 

FI(s)F<:i L c. sA. (-1<mAm+1 < ···)' 
v _ m+l 

hence, 
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We now invoke (36.10) which states that 

for arbitrary complex Ay, and every t in the angular region I arct I < "P - (n/2). We 
therefore obtain: 

c 1 cm 1 f c. 1 
ID3{F}- T<~Ao) tA,+1 - ... - r(-lml tAm+1 A:S._7'+1T<-l.) tA.+1· 

From this, we conclude that 

f. c. 1 
(7) f(t) A:S :=-0 r(-l.) tAp+1 as t -+ 00, in I arc t I ~ "P - (31;/2) - d • 

For the case that the singularity is not at s = 0 but at s = «0, and that F (s) 
has the asymptotic expansion 

'" (8) F (s) A:S L c.(s -ao)A. ._0 
we find, by (36.2), the expansion for I (t): 

(9) I() a.' ~ c. 1 
t A:S e .::..- r(-l) tA.+l· __ 0 • 

The asymptotic expansion (9) for f (t) is obtained simply by the termwise applica
tion of the ~transformation to the asymptotic expansion (8) for F(s). 

We have derived the following theorem. 

Theorem 37.1. Suppose that the function I (t) can be presented as the ~-transform 
of F (s) lor t > T, employing a contour ~ centred at «0 with the half-angle of opening 
"P, n/2 < "P ;:;; n. This, in particular, is true when, in lact, we have initially 

11+.'" 

I (t) = 2 ~ i f ets F (s) ds (a > 9l ao) , 
lJ-ico 

F (s) being analytic in the region between the contour ~ and the line ffis = a, and 
tending towards zero when s tends two-dimensionally in this region towards 00. 

Suppose, furthermore. that F (s) has in I arc (s - oeo) I ;:;; "P the asymptotic expansion 

'" F(s)A:SLC.(s-ao)A. (9lAo<9lAt<···) as s-+ao· 
.== .. 0 

Then we conclude that I (t) has the asymptoti;c expansion 

'" C 1 ( 1 ) f (t) A:S ea.' ~ r<-" 1.) tAo+1 r(-l.) = 0 lor A., = 0, 1~ 2, . . . , 
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as t tends two-dimensionally in the angular region I arct I ;£: 1p - (n/2) - t5 towards 00. 

The function f (t) being a '.ffi-transform is eo ipso analytic in angular region 
I arc (t - to) I < 1p - (n/2). 

Attention is called to the remarkable fact that for possibly occuring exponents 
A.. = 0, 1, 2, ... , the corresponding terms of the expansion of f (t) vanish completely. 
This clearly results from the property that the terms 1, (s - oco)l, (s - OCO)2, ••• , 
which may occur in the expansion of F (s), altogether form a function which is 
holomorphic at OCo and does not contribute to the character of the singularity of 

0(00) C(oo) 

a 

£(00) A (00) 

Figure 40 

F (s) at OCo. Thus, we now understand why the replacement of the straight line of 
integration through a by an angular contour with a as apex, as contemplated on 
p.239, would not yield a useful result. The function F (s) being holomorphic at a 
implies that its power series expansion about the point a has exclusively non
negative integers as exponents; hence, all terms of the corresponding expansion of 
f (t) would vanish. The only conclusion would be that f (t) = 0 (ea t), as already 
mentioned on p. 239; this conclusion, although correct, does not provide useful 
information. Indeeo, by equation (9), f (t) is actually of the order 0 (eaot), with 
ffioco < a. 

Remark: In the above proof of Theorem 37.1, we need not require the function 
F(s) to be analytic on the two rays arc (s - oco) = ± ip; the invoked Theorem 33.7 
did not presume this property, it merely asks for convergence of the two integrals 
00('1') 00 ( - 'I') 

f and f . This fact is important for the intended extension of Theorem 37.1. 
o 0 
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Also, Theorem 36.1 concerning the holomorphy of I (t) merely presumes convergence 
of the two integrals. 

In practical applications, one often encounters the situation in which, to the 
left of a, there are several singular points with largest real part; for instance, one 
might have two singular points 01:0 and 01:1, with ~OI:o = ~OI:l, as shown in Figure 40. 
We presume that I(t) can be presented as the m3-transform of F(s), using the in 
Fig. 40 heavily traced curve as contour m3: it has two centres, at 01:0 and at 01:1; 

all finite and all unbounded straight line portions have the respective directions 
+ "" or - "". According to the remark at the end of Chapter 36, it follows that I (t) 
is analytic within an angular region I arc (t - to) I < "" - (n/2). 

Employing the notations of Fig. 40, we can write: 

B C(~) 

f{t) = 2 ~ i f ehF(s)ds + 2 ~ i f e" F{s) ds . 
..t(~) B 

Extending the curve A ( (0) B to form the curve A ( (0) B D ( (0) which is of the 
original angular type m3, and similarly extending Be ( (0) into E ( (0) Be ( 00), we 
find, upon setting F (s) == 0 on the respective extensions, 

D(~) C(~) 

I(t) = 2~i f ehF{s)ds+ 2~i f ehF(s)ds . 
..t(~) E(~) 

When F (s) has asymptotic expansions of the form (8) as both s -+ 01:1 and s -+ 01:0, 

then we may asymptotically develop the respective integrals of the last equation 
according to Theorem 37.1, since by the above remark, F(s) need not be analytic 
on the rays. Both expansions are, for real t, of the same order of magnitude 
e'iJ/4ot, and we may combine the two expansions by superposition in such a manner 
that the orders of magnitude of the powers decrease. 

Observe: The asymptotic expansion of a single m3-transformation is valid in the 
angular region I arct I < "" - (n/2). By contrast, the superposition of several ex
pansions is valid only for real-valued t. 

Prool: The orders of magnitude of the encountered terms are determined by 
the factors erxot and e«lt. Using 

we find, with t = re€'P (I~I < "" - (n/2», 

e"" = eCPo+oYo)r(cos'P+osin'P), 

hence 

and 
I ea.' I = ecp,cos'P-y,sin'l')r. 

Because of {Jo = {Jl, we conclude that 

~ _ e(Y,-Yo)sln'l'" 
I eO,' I -
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I eaot I = I ea!t I holds only for rp = 0; in every other direction, that is for rp =l= 0, 
I eaot I and I ea!t I differ by a factor ofthe fonn eel'. Forinstance, when (YI - yo) sin rp 
> 0, then ea!t is of lesser order of magnitude than eaot, as t ..... 00. It follows 
that in the desired arrangement of the terms by order of magnitude, all terms 
resulting from the expansion at (Xl would follow behind the infinitely many terms 
resulting from the expansion at (Xo; that is, the former terms would not at all be 
considered. The presented explanation also elucidates the fact that, in general, 
asymptotic expansions may not simply be added term by term, a process which is 
permissible for converging series, instead, one mbst insert the terms of one expansion 
amongst the terms of the other expansion with full attention to the proper position 
according to order of magnitude. 

Theorem 37.2. Suppose that the function f (t) is, for t > T, representable as the~
transform of the function F(s), the employed contour having the shape shown in Fig. 
40: the two centres (Xo and (Xl have identical real parts, and all straight line sections 
have the directions + "p or - "p, with n/2 < "p ~ n. Suppose, furthermore, that F (s) 
has the asymptotic expansions: 

00 

F(s) I"':! L cv(s - ao)Av (~Ao < mAl < ... ) as s ..... (Xo, in I arc(s - ao) I ~"p, 
v=O 

00 

F(s) I"':! L dp(s - al)"p (9b,0 < mXI < ... ) as s ..... (Xl, in I arc(s - al) I ~"p 
p=o 

at (xo and at (Xl respectively. Then the function f (t) has, as real-valued t ..... 00, the 
asymptotic expansion which is constructed by superposition of the expansions 

and 

The function f(t), being a ~-transform, is not defined for real-valued t > T only, but 
for all t in an angular region I arc (t - to) I < "p - (n/2); it is analytic in the deline
ated region. 

By contrast with the situation treated in Chapter 35, where F (s) had single
valued singularities, we notice here, where F (s) does have many-valued sing
ularities, that only the singularities with the largest real part are utilized for the 
asymptotic expansion of f(t). These singularities determine the behaviour of f(t), 
as t ..... 00, in an angular region which lies symmetrically to the positive real axis; 
this region degenerates into a right hand portion of the real axis for several many
valued singularities with largest real part. The question is whether possible singular
ities of F (s) further to the left would contribute to the asymptotic behaviour of f (t). 
When this is the case then these would probably influence the behaviour of f (t) in di
rections other than those mentioned above. This is, in fact, true for instance for entire 
functions f (t) of exponential type and their ~-transforms F (s) which are holomorphic 
at s = 00, assuming there the value zero, as considered in Theorem 30.3. A function 
f (1) of exponential type submits to the same estimation along any ray through the 
origin; thus, one can easily demonstrate that its ~-integral may be evaluated not 
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only along the positive real axis but along any other ray starting at the origin (see 
Fig. 41a), and that all these integrals represent elements of the same function F(s). 
Along a ray in the direction - D, where 

t = e-i{}r: (0 ~ r: < 00), 
we find 

00 (-{}) 00 

(10) F(s) = f e-stl(t) dt = e- i {} f rse-i{}T 1 (e-i{}r:) dr:. 

Substituting 

(11) 

(12) 

o 0 

I(e-i{}r:) = 11(r:), 

£{/1(r:)} = F1(a), 

whereby ~{h} is to be evaluated along the positive real axis (see Fig. 41 b), we observe 
that 11(r:) too is of exponential type, and that F1(a) is holomorphic at a = 00, 

where it assumes the value zero. Eq. (10) implies that 

(13) 

hence, with 

we find that 

(14) 

F(s) = r i {} F1(e-i{}s); 

a = e-i{}s, 

Fl (a) = ei {} F (e i {) a) . 

Obviously, the complex inversion formula can be applied to the ~-transformation 
(12); thus, one finds: 

(15) Idr:) = 2!i S eTa Fda) da for 0 < r: < 00, 

111 

where VI designates a vertical line in the half-plane of absolute convergence of 
~{h} (see Fig. 41c). We suppose that F1(a) has only one singular point (Xl with 
largest real part. Then the vertical line VI is, necessarily, to the right of the point (Xl. 
Replacing hand Fl in (15) according to (11) and (14) by 1 and F respectively, and 
a by ri{}s yields: 

or, with e-i{}r: = t, 

(16) l(t)=2!ife t8 F(s)ds for t=e-i{}T(O<T<OO), 
II 

evaluated along the straight line V which is obtained by a rotation of the plane 
through the angle D (see Fig. 41d). The singular point (Xl of FI(a) transfers to the 
singular point (Xo = ei{}(Xl of F(s) which is furthest in the direction D. 

F (s), and consequently also F I( a), converge uniformly in all directions towards 
zero; hence, we may replace the path of integration VI in the a-plane by an angular 
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Figure 41 

contour ~1 centred at 1X1 having a fixed half-angle of opening "I' > 71:/2, chosen in 
such a manner that all other singular points of Fda) are to the left of ~l (see 
Fig. 41c). In the s-plane this contour ~1 becomes the contour ~ centred at 1X0, 

its bisector forming the angle {) with the positive real axis (see Figure 41d). 
Theorem 36.2 guarantees the convergence of the integral (16) along the contour ~ 
not only for the points on the ray in the dir;'!ction - {) but actually in an angular 
region having a bisector which forms the angle - {) with the positive real axis, and 
the half-angle of opening "I' - (71:/2) (see Fig. 41a). 

Let us suppose that F(s) has the asymptotic expansion: 

00 

(17) F(s) ~ L e.(s - ao)A. 
.=0 

as s -+ 1X0 in the angular region {) - "I' ~ arc (s - 1X0) ~ {) + "I' about 1X0; then we 
can derive from this an asymptotic expansion for t(t). We shall accomplish this, 
using Fda) and /1(1'). 

From (17), using (14), because of 

we conclude that 
00 00 

Fl (a) ~ e(6 L e.( eU (a - a1)4 = L e.e t (4 +1)6 (a - al)A • 
• -0 .=0 

as a -+ IXl in ] arc (a - IXl)] ~ "1'. Hence, by Theorem 37.1, 

as l' -+ 00. in I arc l' I ~ "I' - 7t/2 - ~. 
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According to (11), it follows that 

It (-r:) = I (e-tD-r:) = I (t) ; 

since IXI = e-iDIXO and -r: = e~, we obtain 

al-r:=aot, 

Thus, we finally find 

(18) 
ClO 

I(t) 1»:1 eaot.f:or.(~;..) 
1 

t1v+1 
as t ~ 00 in I (arc (etDt) I :;a tp -1':/2 -~, 

that is, in -{} - tp + 1':/2 + ~ :;a arc t :;a -{} + tp - 1':/2 - ~. 

This expansion shows the same formal structure as the expansion of Theorem 37.1 ; 
however, here we have a different centre and the region of validity is rotated through 
the angle - {}. 

The process which we employed here for entire functions of exponential type 
can actually be used for other functions, provided these can be represented as 
ID3-transforms with some contour ID3 of the type shown in Fig. 41d. We sum
marize these results in a theorem. 

Theorem 37.3. Suppose that the lunction I (t) can be represented, lor t > T, as a ID3-
translorm 01 the lunction F (s), the contour ID3 having its centre at lXo, and the hall-angle 
01 opening tp, with 11',/2 < tp :;a 11'" the bisector 01 the contour lorming the angle {} with the 
positive real axis. Suppose, lurthermore, that F(s) has the asymptotic expansion (17), 
as s ~ lXo in the sector {} - tp :;a arc (s - lXo) ~ {} + tp. Then W4i conclude that I (t) has 
the asymptotic expansion (18), as t ~ 00 in an angular region which is defined by its 
apex that is located at the origin, its bisector that lorms the angle - {} with the positive 
real axis, and its hall-angle 01 opening that equals tp - (11',/2) - <5 (d > 0, arbitrarily 
small). The lunction I(t) is analytic in a similar angular region, possibily having a 
different apex. 

Figure 42 



37. The Asymptotic Behaviour of an Original Function near Infinity 261 

When the contour m3 has several centres, as provided for in Theorem 37.2, 
then one must superimpose the respective expansions. The thus constructed ex
pansion is not valid in an angular region, it is valid only on the ray in the direction 
-#. 

For the special case that F (s) is the ~-transform of I(t) and that F (s) has merely 
a finite number of singular points, we can construct a smallest convex region which 
contains all singular points. Its boundary is a polygon, the corners of which are 
singular points. For every ray which starts at the origin and forms the angle # 
with the positive real axis, we can find the corresponding "supporting line" of the 
polygon, the straight line orthogonal to the ray which touches the polygon. This 
supporting line passes through a single singular point, or through several singular 
points (Fig. 42). 

We select that supporting line which corresponds to the angle # and which con
tains the singular point oc. We assume that 1 (t) can be represented with t = e-ilJ• 

(0 < • < (0) by the complex inversion integral, employing the supporting line 
as the path of integration, excepting the point oc which is circumvented by means 
of a semicircle as shown in Fig. 43. When this path can be replaced by an angular 
contour, and when F (s) has an asymptotic expansion at oc, then one finds, by 

I·plane 

Figure 43 

Theorem 37.3, an asymptotic expansion for I(t) in the direction - # (we disregard 
here the angular region within the asymptotic expansion of I(t) may bevalid). 
When continuously rotating the ray in the t-plane by varying the angle - #, we 
affect a simultaneous rotation in the s-plane of the corresponding supporting line 
in the opposite direction about the polygon, touching for most angles but one 
singular point, occasionally several singular points when it coincides with a side of 
the polygon. The described process clearly demonstrates for what directions in the 
t-plane one can expect to obtain a single expansion, and for what directions one 
obtains superpositions 01 expansions. 

When the representation of I(t) by a m3-integral is not possible for all directions 
but only for a restricted region of directions, then one can find asymptotic ex
pansions of f (t) only for the corresponding directions. 
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The singularities in the interior of the polygon play no role for the asymptotic 
expansions of f(t). They may be utilized though, when functions have been sub
tracted from F (s) which remove the externally located singularities. 

Examples of the presented method of asymptotic expansion will be presented 
in the next Chapter, and on pp. 291 and 297. 

38. Ordinary Differential Equations with Polynomial Coefficients. 
Solution by Means of the Laplace Transformation 

and by Means of Integrals with Angular Path of Integration 

The ~-transformation serves to solve not only linear ordinary differential equations 
with constant coefficients, as explained in Chapter 15, but also linear differential 
equations with polynomial coefficients. We deferred the solution of the latter 
category, for it also provides examples for the application of the method of asymp
totic expansion of a m3-transform which was developed in Chapter 37. 

An equation of nth order having polynomial coefficients of, at most, mth 

degree may be written compactly as follows: 

m II 

(1) L Lap. t P yM (t) = f(t). 
p~o .=0 

The function f (t) need not be a polynomial, it may be some arbitrary function. 
Presuming the existence of the ~-transform of yIn) (t) and of f (t), by application of 
Theorems 9.3 and 9.4 to Eq. (1), we find the image equation: 

(2) 
m II dP L L ap.{-l)P dsP [SO Y(s) - y(O+) S·-l - ••. - y(.-l) (0+)] = F(s). 

p=o.=o 

Each of the terms of (2) yields, since 

:; [s'Y{s)] = s·y(p) + (~) V S·-1 y(p -1) + ... , 

a sum of terms of the type saY(p), with ex ;;:;; v, (3 ;;:;; fl. Transferring all terms of (2), 
which contain neither Y nor any of its derivatives, to the right hand side, we find 
for (2) II m 

(3) L L bpp s· YIp) (s) = Fl (s) . 
• ~o p-o 

The resulting image equation is, again, a linear ordinary differential equation with 
polynomial coefficients; however, Eq. (3) has the order of equation and the maximum 
degree of the polynomial coefficients interchanged when compared with equation (1). 
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This observation immediately suggests the application of the ~-transformation to 
equations with m < n, since this will result in a reduction of the order of the 
equation; the same method might be useful also for m ~ n, in the case that the 
transformation leads to an equation with known solution. 

Eq. (3) incorporates certain initial values of y (t); some have been lost in the 
process of differentiation of (2); for Y (s) we merely require one condition: it, and 
consequently all its derivatives, must be ~-transforms. One obtains m linearly 
independent solutions of (3); from these we must select the functions which are 
~-transforms. For the latter, the corresponding original functions have to be 
determined. 

For the case m < n one, obviously, cannot obtain all linearly independent 
solutions of the original equation (1); one finds, at most, m of these. At least (n - m) 
of the linearly independent solutions of (1) must tail to have a ~-transtorm of its nth 
derivative. 

When the polynomial coefficients of (1) are of, at most, first degree, that is for 
m = 1, we generate an image equation (3) of the first order which can always be 
solved by quadratures, that is by definite integrals. 

The method is first elucidated by the following example: 

The Differential Equation of the Bessel Functions 

The equation 

(4) t2 Z" + t z' + (t2 - a2) z = 0 (IX complex) 

is known as Bessel differential equation. Having here m = 2 and n = 2, we must 
conclude that the application of the ~-transformation would not reduce the order 
of the equation. However, the substitution 

z (t) = t-a y (t), 

followed by division by t1 - a leads to the equation 

(5) ty" - (2a - 1}y' + ty = 0, 

with m = 1 and n = 2; consequently, the image equation of the latter is a first order 
equation; it is 

d 
- dB [s2Y - y(O+}s - y'(O+)] - (2a - 1) [sY - y(O+)] - Y' = 0 

or 

(6) (S2 + 1) Y' + (2a + 1}s Y = 2ay (0+). 

We seek the particular solution of (5) which satisfies 

(7) 

this means that 

ay(O+) = 0; 

y (O+) = arbitrary value 
y(O+} = 0 

for IX = 0, 
for IX 4= o. 



264 38. Ordinary Differential Equations with Polynomial Coefficients 

For this particular situation, equation (6) is reduced to the following form 

Y' s 
y = - (2 a + 1) S2 + 1 . 

The general solution of the latter equation is 

2a + 1 
10gY=- 210g(s2+1)+C 

or 
Y = C(S2 + 1)-a-(1/2). 

The value of IX determines whether or not the last expression is a ~-transform. 
For ffilX ;£ -1/2 it cannot be a ~-transform, for it fails to tend towards zero, when 
s -+ 00. It follows that Eq. (5) with ffia ;£ -1/2 cannot have a solution, the se
cond derivative of which has a ~-transform. (Observe that we discuss here the 
equation for y in which IX occurs in linear form, in contrast to the equation for z in 
which 1X2 occurs, hence no distinction need be made between + IX and - IX.) 
Theorem 28.3, and also the subsequent consideration, guarantees that, for ffilX > 
-1/2, Y (s) is indeed a ~-transform. We can, for ! s! > 1, expand Y (s) into an 
absolutely converging power series: 

(8) 

For real-valued IX, by Theorem 30.2, one obtains the original function, for all 
complex t =1= 0, by termwise inverse transformation: 

Q) (-a-i) t 2r + 2a 
y (t) = C 1:: v r(2 v + 2 a + 1) ,,=0 

Here, Theorem 30.2 may also be employed for complex values IX. For one obtains 
in this case instead of the series ~ !lXv! /x~v , encountered in the proof on p. 195, 
when using IX == IXI + i 1X2, 

(9) 

The Stirling formula: 

log r(z) = (z - ~) log z - z + log ~ + 0 C ! I ) 
is valid as z -+ 00 in the entire z-plane with the exception of the negative real axis. 
With the aid of this formula one demonstfates easily that, for fixedy, the quotient 

r(x) 
r(x + i y) 
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remains bounded as real-valued x -+ 00; thus the series (9) is majorized by a con
vergent series. 

I t follows that the series representation of y (t) may be used for all rx with ffi rx > 
-1/2. The binomial coefficient can be expressed by means of r-functions: 

(10) 

hence, 

(-1)' (2 a + 1) (2 a + 3) ••• (2 a + 2" -1) 
,,12' 

(- 1)' (2 a + 1) (2 a + 2) ••• (2 a + 2,,) 
= ~ 2'(a + 1) ••• (a + ,,) 

(_1)' r(2 a + 2" + 1} r(a + 1) 
= .,,! 2 2• -r(2 a + 1} r(a +" + 1) 

r(a + 1} 20 0 ex> (-1)' ( t )2,+0 

y(t) = c r(2 a + 1) t 6 ,,! r(a +" + 1)"2 . 

The function y (t) satisfies the requirement (7) only when either rx = 0 or else 
ffirx> 0; hence, we must restrict rx to these values. I Equation (5) is homogeneous, 
hence we can arbitrarily select any value for the constant c; for instance, so that 

r(a + 1) 20 

c r(2 a + 1) = 1 . 

Returning to the initially presented Bessel differential equation (4), we find for z (t) 
the following solution which is called Bessel function J a (t) : 

~ (-1)' ( t )2,+0 . 
(11) Jo(t) = ;:'0 ,,1 r(a + " + 1)"2 (t arbItrary complex). 

This solution has been determined for rx = 0 or ffirx > o. One can easily verify 
that actually it satisfies Eq. (4) for all complex-valued rx; this is a consequence of 
the fact that Eq. (4) contains only rx 2, hence + rx and - rx produce the identical 
equation. It can be shown that J a (t) and J - a (t) are linearly independent, provided 
rx is not an integer n; thus one has, for rx =1= n, two fundamental solutions of the 
Bessel equation (4). Another technique must be employed to construct the second 
fundamental solution for the case rx = n. 

The above deduction also produces the I!-transform of t a J a (t) (notice the deter
mination of the constant c) :2 

(12) 

1 For moe;;:; 0 (oe '* 0), the initial value y(O+) which is needed for the image equation (6) does not exist. 

2 Using the formula 
F(2a + 1) = :.:n r(a + 1) r(a +-{) 

we can rewrite this briefly as follows: 

2{tO Ja(t)~ = ~2or(a +{) (S'+1)~+(1/2) • 
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It has a simpler structure than the ~-transform of J a (t), which may be obtained by 
termwise transformation of (11); we find thus: 

(13) B {J (} (y'S2+!- st 1 f ffi 1 
at) = ys2 + 1 = ysa + 1 (ljS2+1 + st or a> - . 

Hence, it is practical to start with (12) rather than with (13) when deriving pro
perties of J a (t) by means of the ~-transformation. 

In Eq. (8) we expanded Y (s) = ~{ta J a (t)} in a series of powers of s which con
verges when I s I > 1, that is outside the circle centred at s = ° through the two 
singular points s = ± i. Alternativelyonecan,for arbitrary So, expand Y(s) in a 
series of powers of (s - so); this series. converges outside the smallest circular 
disk, centred at So, which contains the two singular points ± i. For iristance, with 
So = + i and Is - il > 2, one finds: 

Y (s) = C(S2 + 1ra -(1/2) = c(s - ira -(1/2) (s - i + 2 ira -(1/2) 

( ')-2a-1 (1 2 i )-a-(1/2) ~ (- a - ~) (2 W 
=cs-~ +--. =C~ 

s-z ,,=0 V (s_i)"+2a+1 

This series is of the same type as (8) ; hence, it may be inversely transformed term 
by term. However, instead of s we now have (s - i); this corresponds to a multiplic
ation of the original function by ei t: 

Performing the following substitutions: c by its specified value, the binomial co
efficient by the expression (10) and y (t) by t a J a (t), one finds: 

(14) la(t) = e" ~ (-:-. zl")" r(2 v + 2 a + 1) ( t ),,+a 6 y r(v + a + 1) r(v + 2 a + 1)"2 ' 

and, for instance for IX = 0, 

(15) J (t) _ ,I ~ (- W (2 v) I (.!...-)" 
o - e ~ (vl)S 2' 

"=0 

The series representations (11) and (14) with increasing powers of t converge 
well only for small values of I t I. For large values of I t I, asymptotic expansions 
involving decreasing powers of t are much better suited for use. Such asymptotic 
expansions can be developed by the method devised in Chapter 37. The hypotheses 
for the complex inversion formula are satisfied, hence by (12), 

(16) 
Vi a+fCX> 

-=---=--1'-:-;- (.!...-)a J (t) = _1_. f etS(s2+ 1) -0-(1/2) ds 
r(a+t) 2 a 21'z. ' 

a-leo 
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provided t> 0, mIX> -1/2, and a> o. In the entire plane,F(s) has only the 
singular points ± i which are located to the left of a; these have equal real parts, 
hence both must be considered. The function F (s) converges towards zero when s 
tends two-dimensionally in the entire plane towards 00; hence, the path of inte
gration of (16) may be replaced by a contour m3 as shown in Fig. 44, having the 
two centres ± i, and "p may assume any value in nl2 < "p ;£ n. 

By Theorem 36.1, the integral evaluated along the contour m3 converges not 
only for real-valued t > 0 but actually for all t in the angular region I arct I 
< "p - (nI2). (Here, the point to is real-valued.) Moreover, the integral converges 
for all complex-valued IX, thus providing a representation of J a (t) for all values of 

I 
If 

. i __ J. __ 

Figure 44 

IX with the exception of IX = - 1/2, - 3/2, ... ; for these values of IX, both sides of 
(16) yield O. (For these values, the integrand is analytic in the whole plane; 
hence, the integral along a closed curve composed of m3 together with a circular 
arc on the left side is zero, and the contribution to the integral along the circular 
arc tends towards zero when the radius grows.) We summarize this as follows: 

(17) v~ (~)a J (t) = _1_. J e tS (s2 + 1)-a-(1/2) ds 
r(a+t) 2 a 2:n;~ 

!lll 

for I arc t I < "p - ; , a + - ~ , - ~ , 

In order to obtain the asymptotic expansion which, according to the argumen
tation on p. 256, is valid for real-valued t only, we express F (s) by power series at the 
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two singular points + i and - i. These power series may be ~-transformed term 
by term; the resulting two expansions are then superimposed. We find, at s = i: 

(S8 + 1) -a-(1/2) = (s - ira -(1/2) (s - i + 2 ira -(1/2) 

= (2 .)-a-(1/2) ~ (- a - ~) _1_ ( _ .),-a-(1/2) 
t "'-'0" (2 W s t , ,-

and at s = - i: 

(S8 + 1) -a-(1/2) = (_ 2 i) -a-(1/2) t (- a,,- !) 1 (s + it-a-(1/2) • 
,=0 (-2i)' 

Hence, we obtain 

Vi (t)a r(a +!) 2" fa(t) 

+ (_ 2 ira-(1/2) e -it t (- a,,- ~) 1 1 ._0 (-2W r(-,,+a+t) 
1 

t,-a+(1/2) , 

as real-valued t -+ 00; and, with ± i = e±in/2, 

+ e-it ~ (- a -!) e' (n/2)(,+a+(I/2» 1 } 
6" r(a -" +!) (21),+(1/2) • 

We compare (18) with (33.11) which is valid as t -+ 00 in the upper half-plane: 

(19) f (t) ~ e- it ~ fa -!) ei (n/2)(,+a+(I/2» r(a + '1'+ l) (-1)' 
a y'nr(a+l) ~\ " (21),+(1/2)' 

Steps similar to the ones used in the derivation of (10) lead to the expressions: 

(-a-i) = (-l)"r(,,+a+i) and 
" "Ir(i+a) ' 

(a -t) = (-1)" r(" -a + !) 
" II! r(l-a) . 

Also, we invoke two well known relations from the theory of the r-function: 

n (-l)'n 
r(i + a) r(i - a) = C'OSa"n' and r(i + v - a) r(l- v + a) = cosa n 

(integer-valued v). 
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Using these four relations, one can easily demonstrate that the expansion (19) 
agrees with the second part of the expansion (18): Along the positive real axis, 
the expression (19) has to be augmented by another expansion. 

I· plane 

Figure 45 

s·pJane 

+i 

o 

\ " V 
\ 

-i \ 
\ 

\ 

Theorem 37.3 and the remarks associated with this Theorem provide the ex
planation. In this case, the polygon of singular points is the line between + i 
and - i, which must be considered twice to form a closed polygon. For every 
direction - f} in the upper t-half-plane without the borderline, that is for 0 < - f} 

< n, we have the corresponding direction f} in the s-plane, where 0 > i) > - n. 
The supporting line of the polygon of singular points, orthogonal to the direction f}, 
contains only the singular point s = - i. Consequently, for every direction in the 
upper t-half-plane we have only the asymptotic expansion due to the singularity 
at s = - i. For the positive real t-axis, we have - f} = 0; the supporting line 
orthogonal to the direction f} = 0 contains both singular points, + i and - i. 
This necessitates the consideration of both asymptotic expansions (see Fig. 45). 
Also refer to Theorem 37.2. 

Combining the two expressions of (18), and upon expressing the binomial 
coefficients by F-functions, one finds the expansion in the form (ex 9= -1/2, - 3/2, ... ) : 

(20) 
2 co (-1)"r(a+v+!) ( :1:) 1 

J (t) ,:::; - " cos t - (a + v + ~) -=-2' ---::-;-,,.-;;;;-
a ~.~ v! r(a - v + ~) - (21)·+(1/2) 

as real-valued t -+ 00. 

Having shown by this specific example how, by the ~-transformation, one can 
obtain both converging and asymptotic representations of the solution, we now 
proceed to the general equation with polynomial coefficients. We shall restrict the 
following development to polynomial coefficients of first degree; this will enable 
us-to execute the solutions in all detail. We shall modify the method and thus 
succeed in our search for all fundamental integrals of the differential equation. 
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The General Linear Homogeneous Differential Equation 
with Linear Coefficients 

We shall consider differential equations of the form: 

(21) (ant + bn) y(n) + ... + (alt + bl ) y' + (aot + bo) y = 0, 

admitting real-valued as well as complex-valued coefficients a., b •. We expressedly 
require that 0 

a" =l= • 

When searching for that particular solution, for which ~{y(n)} exists, and which 
assumes the initial values 

y(O+) =y'(O+) = ••. =y(n-l) (0+) = 0, 

then its ~-transform must satisfy the image equation 

(-a ~+b)(snY)+ ... +(-a ~+b)(sY)+(-a ~+b)Y=O lads " Ids I ods 0 

or 

(22) - Y' (ansn + ... + als + ao) + Y (bnsn - annsn- l + ... + blS - al + bo) = O. 

We rewrite the last equation thus: 

(23) 

employing 

-PI(s) Y' + Po(s) Y = 0 or 

(24) 
Pl(S) = a" s" + ... + al s + ao, 

Po(s) = b" s· + (b"_l - n a,,) s·-l + ... + (bo - al) • 

Because of an =1= 0, PI (s) is exactly of degree n, whilst Po (s) has degree n, or less. 
Let CXl, ••• , cx" designate the roots of Pt(s) which are presumed to be distinct; then 
by partial fraction expansion, we have: 

where, similarly as in (15.9), 

d =.!2 
o a.' 

d = po(a.) (v = 1, ... , n) . 
• p{(a.) 

Integration of the image equation yields: 

logY = c + dos + d1log(s -al ) + ... + d"log(s -an) . 

The constant c is indeterminate, since (23) and (21) are homogeneous equations; 
omitting c, we find: 
(25) Y (s) = edos(s - all ell ••• (s ~. an) d •• 
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The exponential factor occurs only when do 9= 0, that is when bn 9= O. The function 
(25) can be a ~-transform only when do is a negative real number or zero, since Y (s) 
must tend towards zero when s tends towards 00 in I arcs I < n/2. When do ~ 0 
then, by the Translation Theorem 7.2, it suffices that 

Z(s) = (s-al)d, ... (s-an)dn 

is a ~-transform. The latter is true when and only when 

ffi(di + ... + dtl) < O. 

The corresponding original function z (t) can be obtained by firstly expanding Z (s) 
into a series of decreasing powers of s: 

Z(s) = S4"+,,·+d,, (1- :1t··· (1- astlt" 

= sd,+".+d" k~ (~1) (_l)k (:1 r··· k~ (~) (_l)k (c;r 
co 

= L em S-m+d,+".+d", 
m-O 

and then inversely transforming thIS series term by term, as permitted by Theorem 
30.2, possibly requiring the extension of the latter to complex exponents as shown 
on p. 264. Thus, one develops a series for z (t) with increasing powers of t which 
converges for all t 9= O. The representation of y (t) is then obtained, for all real 
t> - do, by 

y (t) = z (t + do) . 

For 0 ~ t < - do, we have to set y(t) = 0.3 Finally, we must determine if and 
under what hypotheses y (t) is differentiable n times, and has vanishing initial 
values. 

The method does yield a solution, only when do ~ 0 and ~ (di + ... + dn ) < O. 
For the above, special equation (5), we had 

Pots} = - (2 a + 1) s, PI(S) = S2 + 1 

and 
Po(s) = _ 2a + 1 (_1_ + _1_) 
Pl(S) 2 S - i S + i ' 

hence 
do = 0, d1 = d2 = -(2a + 1)/2. 

The first condition do ~ 0 is satisfied; the second condition ~ (dl + d2) < 0 is sa
tisfied only when - ~(2oc + 1) < 0, that is when ~oc > -1/2. This is exactly the 

3 t ,.. - tin = - bnlan is the root of the polynomial coefficient ant + bn of y(n) in the differential equa· 
tion; it is, in general, a singular point of the solutions as shown by function-theoretical considerations of 
linear differential equations. ' 
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same restriction which we discovered on p. 264. Moreover, we had to restrict IX to 
the values 0 or mIX > 0 in order to comply with the specified initial value IX Y (0) = O. 

The effective application of the ~-transformation to differential equations of the 
stated type is restricted by the required existence of ~{y(n)} which presumes 
integrability of y(n) (t) in every interval 0 ~ t ;;;; T, and the existence of the initial 
values y (0+), ... , y(n-l) (0+). However, in general, solutions do not satisfy these 
two conditions. Therefore, starting with the ~-transformation, we intend to 
develop another method with further reaching applicability in the present case. 

Upon determination of the ~-transform Y (s), one can represent the solution 
y (t) by means of the complex inversion formula: 

a+ioo 

(26) y(t) = -21 . r ets Y(s) ds. 
:If} • 

a-ic:o 

Considering the fact that the solution y (t) ultimately occurs in the fo!,m (26) one 
might wonder whether one could, to begin with, postulate the solution in this form 
and then determine the Y (s) so that the y (t) satisfies the differential equation. 4 

For this purpose one must differentiate y (t) n times.We differentiate under the 
integral sign: 

a+ia) 

(27) y(·)(t) = 2~i J etss' Y(s) ds (v=l,"',n), 
a-leo 

and then substitute these terms into the differential equation. However, in general, 
formula (27) is wrong, as was already demonstrated in connection with Theorem 
36.1. The cause of the discrepancy is clear from the point of view of the ~-trans
formation, for we have the image function s Y (s) - y (0+) corresponding to y' (t) 
and therefore, in fact, 

a+ioo 

y'(t) = 2~i Jets [s Y(s) -y(O+)]ds, 
a-i co 

in general, 
a+;a) 

(28) yM (t) 2 ~ i Jets [s' Y (s) - Y (0+) S·-1 - ... - y(v-l) (a+)] ds. 
a-i co 

We conclude that (27) is correct only when the first n initial values of y (t) vanish. 
Consequently, the postulation (26) is useless when the solution of the differential 

equation has non-zero initial values or has no initial values whatever. One may 

4 This is equivalent to the representation of y(t) by a Fourier integral: 

+co 

y(t) = 2~; eat f eU 1/Y(a + ifJ) dfJ, 
-co 

in a manner similar to that employed for differential equations in a bounded region where the solution is 
postulated in the form of a Fourier series. 
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encounter this situation when solving differential equations with polynomial 
coefficients as, for instance, with solution (11) of Eq. (4), for met < O. 

However, when one replaces the straight line path of integration of (26) by an 
angular contour ~, then, by Theorem 36.1, one may legitimately differentiate 
under the integral sign; that is, for a function of the form 

(29) y(t) = 2~i ~ etB Y(s) ds, 

one indeed finds 

(30) y(v) (t) = 2~i ~ ets sv Y (s) ds. 

We have to keep in mind that, according to Theorem 36.1, y (t) must be analytic in 
some specified angular region and that, possibly, (29) may be correct for t > T 

;;;; 0 only. 
When initially y (t) is generated by means of the complex inversion formula 

using the ~-transform Y (s), then one can substantiate the correctness of (30) by 
an alternative pFocess: Replacing in formula (28), which is valid under these circums
tances, the straight line path of integration by an angular contour to the right of 
s = 0, the integrals involving the powers S'-l, ... , s, 1 yield nought, according to 
formula (25.6), and one is left with (30). 

We now seek to satisfy the differential equation (21) in an interval t > T;;;; 0 by 
a function of the form (29), leaving the actual position of the angular contour as yet 
unspecified. The derivatives y(v) (t) are then given by (30), and Y (s) is to be speci
fied so that 

(31) 
1 n 

2 niL (a. t + b.) f ets s· Y (s) ds = O. 
.=0 ml 

In order to permit the writing of the left hand side of (31) by an integral which 
contains the parameter t only in the factor ets, we alter ty(V) (t), invoking the rule 
of integration by parts: 

21t i t y(v) (t) = f (t et.) (s'Y(s)) ds = ets s· Y(s) I ml - f ets d (so:; (s» ds, 
ml ml 

interpreting the first term of the last expression as the difference of the limits of 
etssv Y (s) which are obtained when s moves on both rays of ~ towards infinity. 
In the case that, for sufficiently large t, we have 

(32) lim ets s· Y (s) = 0 
iRS-+-CD • 

(the Y (s) determined later on, indeed has this property), then we have: 

2ni t y(O)(t) = - f ets [v sv-Iy(S) + s· yl(S}] ds 
ml 
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and, instead of (31), 

leta [ - a1l (n S1l-1 Y + s1l y,) + b1l s1l y - ... - al (Y + s Y') + bi s Y 

- ao Y' + bo Y] ds = O. 

This equation is certainly satisfied, when the expression within the square brackets 
vanishes identically,5 that is 

This differential equation conforms with the equation (21), which was obtained 
by means of the ~-transformation, in the case of vanishing initial values. This is 
obvious since for these conditions the derivatives of (26) are exactly equal to 
those of (29). When, as before, presuming distinct zeros for the polynomial PI (s) 
which is determined by (24), then Y (s) has the form (25): 

Y (s) = etl·,(s - al)1lt ••. (s - a1l)tI ... 

This function satisfies, for t > - ffido, the condition (32); hence, it is useful for 
our purpose. None of the constraints regarding the exponents do, db ... , d1l, which 
we had to specify on p. 271, have been applied here. With this Y (s) on.e obtains, 
according to the postulation (29): 

(33) Y (t) = 2 ~ i f e(t+tlo)S(s - al)tI • •.• (s - an)tI .. ds. 
m 

Theorem 36.1 guarantees the convergence of this integral in the angular region6 

I arc (t + do) 1< 1p - (n/2) (see Fig. 32), where it represents an analytic function. 
Retracing our argumentation in the opposite direction, we obtain proof that y (t) 
satisfies the differential equation (21). 

Various positions can be selected for the angular contour ®; it is this varia
bility which enables us to represent, with the integral (33), n linear independent 
solutions of (21). First, we observe by Cauchy's theorem that the integral yields 
identical results when evaluated along two angular contours which do not enclose 
any of the roots 0:, that are, in general, branch points of the integrand. To generate 
distinct functions, we must select the various angular contours in such a manner 
that 'certain roots 0:. are located between the contours. Presuming that 

5 This is sufficient, although not necessary. When, for instance, Y(s) is analytic in the region to the left 
of m! and we temporarily complete the contour m! by a circular arc m to form a closed contour, then the 
integral along the closed contour yields the value zero. When Y(s) behaves in such a manner that the 
value of the integral along !8 tends towards zero, for increasing radius, then the integral along ~ 
vanishes. 

6 In this case, convergence depends only upon the behaviour of the term e(Hdo)'. One can easily de
monstrate that the exponent (t + do)s tends, for larc(t + do) I < 'I' - (,,/2), along the rays arcs = ± 'I' 
in the left half-plane towards 00. 
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we can locate ~1 to the right of ~1, ~2 between ~l and ~2, and so forth, and then 
select ~l as the centre of ~l, ~2 as the centre of ~2, etc. The respective ha1£
angles of opening 1pv need not be equal; we may select these so large that the next 

• 

Figure 46 

root ~v+l is to the left of ~v, as shown in Fig. 46. The functions generated in 
this manner 

(34) Yv (t) = 2: i f e(!+d.)s (s - Ul)d, ... (s - un)d" ds 
tID. 

are, indeed, linearly independent; this fact is demonstrated by comparison of the 

asymptotic expansions 

of these functions. The asymptotic expansions are obtained by means of the method 
of Theorem 37.1. For instance, when considering YI (t) we observe that the func
tion Y (s)/(s - ~l)dl is holomorphic at ~l; thus, it can be expanded into a power 
series about ~l with integer-valued exponents: 

Hence, in some neighbourhood of ~l. we have the convergent expansion: 

co 

Y (s) = L e.(s - u1r+d" 
.=0 

involving the generally complex constant dl . The asymptotic expansion of YI (t) 
is obtained by means of Theorem 37.1; it is: 

(35) yI(t) R:i ea,t i C, rv-d,-l as t-+ 00 
,=0 r(- v -d1) 

in the angular region I arct 1< 1p1 - (n/2). For the special case that dl is a positive 
integer, all terms of the expansion vanish, leading to the coriclusion that Yl (t) = 



276 38. Ordinary Differential Equations with Polinomyai Coefficients 

= 0(ea1t). When dl is a negative integer, then all terms with '/I ~ -dl are zero. 
The case dl = 0 cannot occur.7 

Similar asymptotic expansions can be found for the other integrals Y2(t), ... , 
Yn (t). 

The solutions Yl (t), ... , Yn (t) are linearly independent provided none 01 the. num
bers db ... , dn is a positive integer. 

In our proof, we. first recall that we presumed the real parts of all IX. to be 
distinct, and to be arranged in the order mIXl > mIX2 ... > mIXn. Suppose there 
are constants Cl, C2, ... , Cn such that 

(36) 

then we would also have 

Using only the first term of each asymptotic expansion, one finds: 

lim Yl (t) e-a,t t",+1 = r(~ dl ) 9= 0, 
, ... co 

lim Y2(t) e-Gat t"o+1 9= 0, and so forth. 
, ... co 

Moreover, we have m(IXl - IX2) > 0, m(IXl - IX3) > 0, ... , and in the limit as t -+ 00, 
(37) yields: 

Co 
C1 r(-dl ) = 0, 

that is, Cl = 0; and (36) becomes 

C2Y2(t) + ... + CnYn(t) - O. 

Iterating the aQove process, we similarly conclude that C2 = 0, and so forth, and 
finally Cn = O. Thus, we have shown that the relation (36) necessitates that all 
coefficients are zero. This implies that the Yb ... , Yn are linearly independent 
indeed. 

Solutions of the type of asymptotic expansion~ having the form (35) are known 
as Thome's normal series in the theory of differential equations. 

Each solution y. (t) is analytic in some angular region I arc (t + do) I < "P' - (n/2) , 
which has its apex at - do = - bnlan and extends towards the right. When using 
angular contours ~. with rays biased towards the right, then one would obtain 
solutions in angular regions with the same apex - do which extend towards the 
left (see lower part of Fig. 47); accordingly, one would produce asymptotic ex
pansions as t approaches infinity towards the left. Rotation 01 the angular con.,. 
tours ~., so that the bisectors are no longer horizontal, effects a counter-rotation 
01 the angular regions 01 the y.(t) as explained in Theorem 37.3 and the subsequent 
remarks. Whenever, in the process of rotati.on, an angular contour contacts some 

7 When dl is a positive integer, then VIs) is holomorphic at 0<1; when dl is a negative integer, then VIs) 
has a pOle of order - dl at 0<1. 
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root rx./J, one must stop there since rx./J is, in general, a singular point of Y (s). Only 
when d/J is a positive integer, that is when Y (s) is holomorphic at rx./J, may the 
rotation be continued past rx./J; the root rx./J yields the same result as rx. •• This ex
plains why one cannot obtain n linearly independent solutions when a positive 
integer is amongst the d •. 

-dq 

Figure 47 

We presented the method as a kind of reversal 0/ the method 0/ the f!.-trans/or
mation insofar as the development starts here with a complex integral of the type 
of the complex inversion formula; the latter occurs at the end of the process when 
the f!.-transformation is used. Both methods overlap to some extent. 

When one starts with the f!.r-transformation and one introduces the postulation 
(29) as another form of the complex inversion formula of this transformation, then 
one invariably selects the path ID3 of integration in the holomorphy half-plane of 
Y (s) ; that is to the right of all singular points of Y (s), as is proper for the inver
sion formula of the f!.I-transformation. The use of any path of integration amongst 
the singular points of Y (s) is strange to the concepts of the f!.I-transformation. 
This choice seems natural, however, in view of the fact that the complex inversion 
formula is actually associated with the f!.n-transformation (Theorem 24.3). One 
f!.n-trans/orm may have distinct original/unctions in distinct vertical strips 0/ the 
s-plane. For instance, the function Y (s) = l/(s - rx.) has, in the half-plane ~s > 
> ~ rx., the corresponding original function: 

for t ~ ° 
for t < 0, 
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since 
+co 00 

f e-st Yl(t) dt = f e-(s-a)t dt = _1_ 
s-a for lR(s - a) > 0; 

-co o 

whilst, in the half-plane ffis < ffioe, the corresponding original function is given 
by: 

Y2(t) = 1 0 
_eat 

for t> 0 

for t :::;;; 0, 
since 

+co 0 

f e-st Y2 (t) dt = - f e-(s-a)t dt = _.1_ for lR(s - a) < O. 
s-a 

-00 

This phenomenon is analogous to the fact that one and the same analytic function 
may in different annular regions, where it is analytic, be represented by different 
Laurent series (here, the analytic function is the image function, the sequence 
of the coefficients of the Laurent series is the original function); for instance, 

1 co +co 11 
-- = '" z" = '" a z" with a = 1-z 4..J 4..J" " ,,=0 "=-co 0 

for n ;;;;; 0 
in I z 1< 1, 

for n < 0 

for n;;;;; 0 
in I zl > 1. 

for n < 0 

1 <X) 1 +co 10 
-- = - L - = L a z" with a = 
l-z ,,=lz" ,,=-co" "-1 

When Y (s) is analytic in different vertical strips, then one obtains the original 
function which corresponds to some particular strip simply by selecting the path 
of integration in the inversion formula in that strip. When beginning the develop
ment of the solution Y (t) with the complex inversion integral of the \!n-transfor
mation, then it is quite natural to select distinct paths of integration in the distinct 
strips of holomorphy, that is between two singular points. 

39. Partial Differential Equations 

The solution of ordinary differential equations with constant coefficients by mean~ 
of the \!-transformation is accomplished very easily, since the \!-transformation 
removes the differentiation, a transcendental operation, and an algebraic image 
equation is obtained. When the original eq~ation contains derivatives with respect 
to two variables, say x and t, that is it represents a partial differential equation, 
then the \!-transformation applied to the variable t will remove differentiation with 
respect to t, and the image equation is an ordinary differential equation, with the 
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variable x. Obviously, for this purpose we must presume that t varies in the inter
val 0 ~ t < 00; the variable x may range in an interval which may be bounded 
or unbounded at one or both sides. Accordingly, we have in the xt-plane (see 
Fig. 48) as fundamental region of the partial differential equation either a half
strip or a quadrant or a half-plane. 

To determine a definite solution u (x, t) of the 
partial differential equation, one must specify u 
or certain derivatives of u or linear combina
tions of these on the boundary of the fundamen-
tal region: the boundary values. The boundary 
values which are specified along the boundary 
t = 0, usually are called initial values, since most 
often t represents time and t = 0 the initiation of 
the time scale of the problem. A partial differen
tial equation together with the specified boundary 
values is a boundary value problem. When x varies 
between - 00 and + 00, in which case only ini
tial values can be specified, one uses the desig
nation initial value problem. 

For most boundary value problems, the fin
ished solution is meaningless on the points of the 

U(X,t) 

Initial values 

Figure 48 

boundary of the fundamental region and, consequently, the solution cannot re
present these boundary values. One can only request that the solution converges 
towards the specified boundary value, when the point (x, t) approaches some 
boundary point from the inside of the fundamental region, in general along a line 
orthogonal to the boundary. Thus, the term boundary value is to be understood as 
a limit (see Fig. 48). 

There is no generally applicable rule which would enable us to specify type 
and number of necessary boundary conditions. Instead, one has to scrutinize each 
problem to discover what boundary conditions could or ought to be stipulated, 
to guarantee a solution, preferably a unique solution, of the problem. 

To avoid unproductive generalities, we shall employ a few typical examples to 
demonstrate the technique of the ~-transformation for boundary value problems, 
thus presenting all essential steps. 

1.The Equation of Diffusion or Heat Conduction 

Consider a recti-linear conductor of heat between x = 0 and x = l; let u(x, t) 
designate the temperature at the location x and the time t. After appropriate 
normalization, we find the partial differential equation 

(1) 
8au au 
a~1 = at (0 < x < l, t> 0). 

The identical equation is derived for other diffusion phenomena; we shall, how
ever, for easier visualization, retain the terminology of heat transfer. 
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There are many possible boundary conditions. We shall select here the simplest 
ones the physical meaning of which suggests that they suffice to determine u (x, t). 
We specify the initial temperature of the conductor, which may vary with x, that 
is we employ some function Uo (x); we specify the temperature at the end points 
x = 0 and x = l, which may be functions of t, that is we use ao (t) and aI(t). Ac
cording to the above remarks, these boundary conditions are understood as limits 
when (x, t) approaches the respective boundary along a line orthogonal to it; in 
mathematical terms we write the boundary conditions as follows: 

(2) lim u (x, t) = Uo (x) (0 < x < l) ; 
t .... +o 

(3) lim u (x, t) = ao (t) , lim u (x, t) = aI(t) (t> 0) . 
%-:+0 % .... 1-0 

The application of the ~-transformation to u (x, t) with respect to the variable t, 
does not involve the other variable x which assumes the role of a parameter which 
re-appears in the image function; the latter is written accordingly as U (x, s) ; it is 

(X) 

£{u(x, tn = f e- st u(x, t} dt = U(x, s) (0< x< l). 
o 

When seeking the image equation to Eq. (1), that is when applying the 5!
transformation to the latter, Theorem 9.1 is to be used for the derivative with 
respect to t. Hence, we find: 

£ { ~~ } = s U (x, s) - u (x, 0+) = s U (x, s) - Uo (x) , 

obviously employing the hypothesis: 

Wl: 5!{8uj8t} does exist. 

In order to express 5!{82uj8x2} in terms of U (x, s), we require another hypo
thesis: 

W 2: 5!-transformation may be interchanged with differentiation of u (x, t) with 
respect to the parameter x: 

~ {82u } = ~ £{u} = 8'U(x,s) . 
8x2 (lx2 8x2 

With these hypotheses we can find the image equation of (1); it is 

82 U(x, s) 
8x2 =sU(x,s) -uo(x). 

In this image equation only a derivative with respect to the parameter x occurs; 
we can treat this equation as an ordinary differential equation, replacing 82j8x2 
by d2jdx2 : 

(4) 
d 2 U (x, s) 

dx2 
-sU(x,s) = -uo(x). 
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The boundary condition (2), which is called initial condition, is already incorporated 
in (4) and thus automatically accounted for. Next, we investigate the effects of 
the ~-transformation upon the other boundary conditions (3). 

Writing rather carelessly 

u(O,t) =ao(t): u(l,t) = aI(t) , 

one could argue: When transforming u (x, t) for every value of the parameter x 
in the interval 0 < x < l, we produced U (x, s); similarly, we ~-transform u (x, t) 
for the values of parameter x, x = 0 and x = l: 

£{u(O,t)}=£{ao(t)} or U(O,s) = Ao(s), 

£{u(l,t)} =£{al(t)} or U(l,s) =AI(s). 

The boundary values of u (x, t) produce, upon transformation, the boundary values 
of U(x, s). 

Actually, one does need a further hypothesis to establish the above presented 
result. This is due to the limit character of the boundary conditions of u (x, t) : 

Wa: ~-translormation may be interchanged with the limiting operations x -+ + 0 
and x-+l- o. 

With Hypothesis Wa, we indeed find: 

£ { ao (t)} = 2 { lim u (x, t)} = lim £ { u (x, t)} = lim U (x, s), 
s-++o s-++o s-++O 

£{al(t)}=2{ lim u(x,t)}= lim £{u(x,t)}= lim U(x,s); 
s-+I-O s-+I-O s-+I-O 

that is, with ~{ao} =Ao(s) and ~{al} = At{s), 

(5) lim U(x, s) = Ao(s), lim U(x, s) = Al(S). 
s-++O s-+I-O 

Thus, we obtain as "the image" 01 the boundary value problem involving a partial 
differential equation in two independent variables a boundary value problem in
volving an ordinary differential equation. Upon solving the latter, one finds the 
solution of the former original problem through inverse ~-transformation. 

Scheme: 

I partial differential equation 
Original space plus initial condition Solution 

plus bOUndjY conditions I 
~-transformation ~-I-transformation 

1 I 
Image space {ordinary differential eqUatiOn} ____ ___>. Solution 

plus boundary conditions 
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We ought to be aware of the fact that the presented method (like any other 
method) requires certain hypotheses. Possibly, there might be solutions which do 
not comply with these hypotheses and, therefore, cannot be obtained by our 
method. Further considerations regarding this question will be presented on p. 287. 

In the image space, we have to solve the ordinary differential equation (4) with 
the boundary conditions (5). We have solved this problem in Chapter 16. We begin 
the further development for the special case l = 00 which, in the inverse trans
formation step, does not require higher transcendental functions. 

The Case of Infinite Length 

Complying with the hypotheses of Theorem 16.1, we assume that the initial tem
perature uo(x) is continuous and has a finite limit uo(oo). By (16.8), for equation 
(4) we find the only consistent boundary value: 

U(oo,s) = 140(00); 
s 

the corresponding boundary value in the original space is: 

u(oo, t) = uo(co) = const, 

a physically plausible requirement. 

The solution of the boundary value problem in the image space is, by (16.10), 

(6) 

with 

(7) 

.. 
U(x, s) = Ao(s) e-"Vs + f 'Y .. (x,~; s) uo(~) d~, 

'Y .. (x,~; s) = 

o 

\

_1 e-"Vs sinh ~ Vs 
Vs 
_1_ e-eVs sinh x Vs 
Vs 

for 0 ~ ~ ~ x 

for x ~ ~< co, 

where, as emphasized on p. 89, Vs represents the root with positive real part, the 
principle branch of Vs. 

For the purpose of inverse transformation we employ the correspondences: 

e-kVs tH) tp(k t) = k e- k"/(41) (k> 0) I 

, 2ynt3/1 

1 - 1 
-_ e-kys tH) X(k, t) = -- e-k'f(4I) 
'is ynt 

(k ~ 0). 

Thus, we find: 

1 1 - 1 Vs e-sy' sinh ~ Vs = 2 Vs (e-( .. -ElY. - e-(SHlVs) tH)2 [X(X-~, t)- X(x+~, t)] 

(0 ~ ~ ~ x) I 
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_1_ e-Eys sinh X Vs = _1_ (e-(i-~)YS - e-(H~)YS).-o~ [x(E-x, t) -x(E+x, t)] 
Vs 2Vs 2 

(X ~ E < (0). 
The right hand sides of these two correspondences are, in fact, identical, since 
X (x - E, t) = X (E - x, t), and we find for roo the single expression 

1 
(8) "2 [x(E - x, t) - x(E + x, t)]. 

00 

When f ... dE may be interchanged with the ~-Ltransformation, then we find 
o 

the original function l of (6): 
(I) 

(9) u(x, t) = ao (t) * lJ'(x, t) + ~ f [x(E - x, t) - x(E + x, t)] Uo (E) dE. 
o 

When, as presupposed above, Uo (x) does have a limit when x --+ 00, then the inte
gral converges absolutely and, indeed, we find that 

We may invoke the principle of extension (see p. 74) and confirm that u(x, t) 
represents the solution of the boundary value problem (1), (2), (3) for l = 00 

irrespective of the introduced hypotheses, provided only that ao (t) and Uo (x) are 
continuous functions. To begin with, one quickly confirms that lJ'(x, t), x(x - E, t) 
and x(x + E, t) satisfy the differential equation (1). The function 11' as well as its 
first and second derivative with respect to x are continuous, hence 

az az1p (x. t) 
ax! ao (t) * 11' (x, t) = ao (t) * ax! 

By Theorem 10.5, since 11' (x, 0+) = 0, one finds that 

a a1p(x t) 
at ao (t) * 11' (x, t) = ao (t) * a: 

the first term of (9) satisfies (1). The second term can be differentiated under the 
integral sign.with respect to either x or t, since all functions are continuous and 
the by differentiation created integrals converge uniformly in a neighbourhood of 
x> 0 as well as in a neighbourhood of t > O.This shows that the second term,too, 
satisfies equation (1). 

1 On p. 57 we derived the formula 'P(x1,1)*'P(X2,t) = 'P(XI + x2,1); according to (9) we read from 
this formula the following physical implication: For the case uo(tL== 0, one can calculate the tem
peratlm~ u(x,l) at the location x = Xl + X2 by either of two methods: One can directly determine 
U(X,1 + x2,1) = ao(l) * 'P(XI + x2,1), or one can employ two steps, first evaluating U (Xl, I) = ao (t) * 'P(XI,t) 
and then, using this function as a new excitation at Xl, once more employ (9) and calculate U(XI + X2,t) = 
= ao(t)*'P(Xl>t)*'P(X2,t). 
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With regard to the boundary conditions, one observes easily that both 

Ul (x, t) = ao (t) * tp(x, t) 

with fixed x> 0 as t-+O, and 

U2(X, t) = ~ j [X(~ - x, t) - X(~ + x, t)] uo(~) d~ 
o 

with fixed t > 0 as x -+ 0, tend towards zero. The verification of the other con
ditions is more involved. We start with the integral 

v(x) = j 'P (T) tp(x, T) dT, 
o 

which we presume to converge, when x > o. The function "I' (x, T) has, for fixed x, 
as a function of T, the graph illustrated in Fig. 49; it assumes its maximum value 
C/X2 (C = 3 V6e-3/2/l'n) at T = x2/6. One can easily verify that the area under the 

'flx,T) 

Figure 49 ~~------~------------------------_ r 

graph has size one; for small values of x, obviously this area is concentrated near 
the origin. When 'P (T) is continuous from the right at T = 0, then the v (x) is, for 
small values of x, approximately equal to 'P (0)·1 and it tends towards 'P (0) as 
x -+ O. Setting, for fixed t > 0, 

1 ao(t - T) 
'P(T) = 

o 

for 0 ~ T < t 

for T !f; t, 

we find that Ul (X, t) = v (x) and we arrive at the following conclusion: 
When ao (t) is continuous from the left in t > 0,2 then we find that 

(10) Ul (x, t) = ao (t) * tp(x, t) ~ ao (t) as x -+ O. 

2 When, at t, ao(t) is continuous from the left, then ao(t - T), considered as a function of T, at T = 0 
is continuous from the right. 
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Thus, we have here the typical situation in which the solution of a boundary value 
problem does not actually assume the boundary values; however, it does have the 
boundary values as its limits. In the expression 

t 
x f e-"'/4r 

Ul (x, t) = .r= ao (t - r) -sj2 dr, 
2 vn l' o 

the integral diverges for x = 0; moreover, even if it had a finite value, then due 
to the factor x, udO, t) would be zero instead of ao (t). 

In order to find the limit of Uz (x, t) for fixed x > 0, when t -+ 0, we perform 
the following modification: 

.. (x, t) - 2 v-. 1 [,-«-.,'," .. (e) d, -[ ,-"+""" u, (0) d, I 
= 2;n t 1 j e-(~-,,)·/4t Uo (~) d~ - f e-(~-")'/4t Uo (- ~) d~ I 

o -CJ) 

We define a function w(~) by 

and we find3 

Setting 

1 uo(~) when ~ ~ 0 
w(~) = 

- uo(-~) when~ < 0, 

~ - x = - v:r for - co < ~ < x , 

~ - x = + v:r for x ;:;; ~ < + co , 

and 1/ (4t) = s, one obtains 

.. (x, t) ~ V : 1 j ,-" w(x - Y.) :v. + j ,-n w(x + Y.) :v. } dT 

w (x - V"T) + w (x + VT) V dr. 2 l' 

3 This integral defines a transformation which transforms the function w (;) into the function U2 (x,t) 

of x, involving the parameter t. It is known as Weierstrass Transformation since Weierstrass has shown 
for the first time that U2(X,t) ~ w(x) as t ~ 0, at every point where w(x) is continuous. We soall show 
this property as a consequence of an earlier theorem. 
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At all points x where w is continuous we have 

w(x-VT)+w(x+VT) () w(x-VT)+w(x+VT) 
2 ~ w x, hence 2 Vi ...., w (x) -,;-1/2, 

as -,; ~ O. Thus, by Theorem 33.3, 

1 In ( 1) r (t) V s U2 x, 47 ...., w (x) ---;ti2 as s ~ 00 (F(1/2) = tf;); 

that is 
U2 (x, t) ~ w (x) as t ~ O. 

Restricting x > 0, we find that 

(11) U2 (x, t) ~ Uo (x) as t ~ O. 

Finally, we show that, for fixed t, u(x, t) ~uo(oo) when x ~ 00. Obviously, 
we have 

co 
ao (t) * "P(x, t) ~ 0, 2~ f e-(H zl'/4t Uo (~) d~ ~ 0 as x ~ 00. 

o 

Consequently, one merely need consider 

Using 

ua(x, t) = _1_ fco e-(e-Z )'/4t uo(~) d~ = _1_ fco e-E'/4t uo(~ + x) d~. 
2ynt 2ynt o -s 

+CO 
_1_ f e-E'/4t d~ = 1 , 
2ynt 

-co 
we construct 

Ua(x,t) -uo(oo) =---:.~ fco e-E'/4t[uo(~+x)-uo(00)]d~ 
2 v:n: t 

-s 

-s 

- Uo (00) __ 1_ f e-E'/4t d~. 
2ynt 

-co 

The function Uo is continuous, and has a limit when x ~ 00; hence, it follows that 

luo(~+x)-uo(oo)I<M forall ~+x~O. 

For every given e > 0, we can find an X so that for all x > X we have: 

-s/2 

_1_ f e-E'/4t d~ < e, 
2ynt . 

-s 
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\uo(;+x)-uo(oo)l<s with-; ~E<ct:I, thatis ; ~E+x<ct:I, 

It follows that, for x > X, 

-:< 

_1_ f e-r/4t dE < s . 
2ynt 

-co 

co 

287 

\us(x,t) -uo(oo)I~Ms+s ~~ f e-r/4t dE+\uo(oo)ls«M+l+\uo(oo)\)s; 
2 vnt -:</2 

this shows that Us (x, t) ~ Uo (00) as x ~ 00. 
The conclusions can be summarized in the following theorem. 

Theorem 39.1. Consider in the fundamental region x > 0 and t > 0, the following 
boundary value problem: In the interior of the fundamental region, the function u (x, t) 
satisfies the partial differential equation 

On the boundary t = 0, we specify, for x ~ 0, the continuous boundary value func
tion Uo (x), that is 

lim u(x, t) = uo(x) for x> O. 
1-++0 

We assume that lim uo(x) = uo(oo) exists. At both boundaries, x = 0 and x = 00, 

we specify the boundary function ao (t) which is continuous for t > 0, and the con
stant value Uo (00) respectively: 

lim u (x, t) = ao (t), lim u (x, t) = Uo (00) for t> O. 
:<-++0 :<-+co 

It follows that (9)1 is a solution of the problem. 

We now ask if (9) is the only solution. Presuming the existence of two distinct 
solutions, we conclude that the difference between these solutions is also a solu
tion, which has boundary values zero along all boundaries. This difference must 
fail to comply with at least one of the hypotheses WI, W 2, and W s. Indeed, such 
"singular solutions" do exist as shown, for instance, by 

1I"",(x, t) _ { 0 
u (x, t) = V'(x, t), u (x, t) = lit" ,and u (x, t) = 

V'(x, t - to) 

for 0 <t ~ to 

for·t> to. 

One can easily demonstrate that each of these functions (including the last one) 
satisfies the differential equation in the interior of the fundamental region; also, 
each has zero boundary values. They fail to comply with hypothesis W s, for the 
cQrresponding ~-transforms are: 

U (x, s) = e-:<Vs, U (x, s) = s" e-:<Vs, U (x, s) = e~!'s e-:<y's, 
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with the respective limits, as x -+ 0: 

1, 

none has the boundary value ~{O} = O. 
These singular solutions are included in formula (9), provided we replace func

tions by distributions. Using the boundary functions Uo (x) == 0 and, respectively, 
for ao (t): 

then (9) yields, in view of the properties (14.8) and (14.10) of the l5-distribution: 

l5(e) • lp(x, e) = lp(x, e), I5(II)(e). lp(x, e) = atl~:. t) , and 

6(e - eo) • lp(x, t) = I 0 for 0 < e =a; eo 

lp(x, t - to) for t> to' 

These singular solutions describe temperature distributions due to impulses and 
multi-impulses at t = 0 and t =to at the point x = 0 in a heat conductor of initial 
temperature zero. In physics, we can interpret these boundary values as heat ex
plosions. 

We must conclude that the solution of the boundary value problem is not unique, 
unless further conditions are stipulated. Necessarily, the proofs of uniqueness 
presented in some text books must be faulty. Indeed, when scrutinizing these 
proofs one discovers the use of several not explicitly formulated hypotheses. 

The Case of Finite Length 

In the image space, we are concerned with the solution of the ordinary differential 
equation (4) with the boundary conditions (5); this problem has been solved in 
Chapter 16. As was done there, we split the problem into two parts, to clarify the 
development. 

1. Thermal Conductor with Vanishing Initial Temperature 

With uo(x) == 0, the Eq. (4) becomes a homogeneous equation; the boun<!ary 
values may be chosen arbitrarily. The solution is, by (16.2), 

(12) 

with 

U(x, s) = Ao(s) Uo(x, s) + Ads) Udx, s) 

U ( ) _ sinh (I-x) Vs 
ox, s - .1':' 

sinhl vs 
sinhxVs 

Ut{x, s) =. .1': ' 
sinh l vs 

where Vs represents the principal branch. These functions are analytic in ms > 0, 
since the characteristic values of the differential equation (compare p. 88), where 
the denominator sinhlVs vanishes, are exclusively located at 0 and on the nega
tive real axis. 
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The corresponding original functions are determined by means of Eq. (30.10). 
These are: 

for 0 < x< 2l, 

for -l < x>l. 

We employ the Convolution Theorem to find the original function of (12); it is: 

(13) u (x, t) = ao (t) * Uo (x, t) + al (t) * Ul (x, t) for 0 < x < l. 

The explicit presentations are (compare (30.8.)): 

(14) 
1 +co 

uo(x, t) = ~ (2 vl + x) e-(~bJ+.,)'/U 
2yntS/2 .~co 
+a> 
L 11'(2 vl + x, t) , 

.=--(0 

+co 
(15) Ul (x, t) = L 11'(2 vl + l - x, t) . ._-CD 

2. Thermal Conductor with Vanishing End Temperatures 

With ao (t) == aI(t) == 0, and arbitrary Uo (x), the Eq. (4) is an inhomogeneous 
equation with vanishing boundary values. The solution is, by (16.5), 

(16) 

with 

I 

U(x, s) = f r(x, e; s) uo(e) de , 
o 

r(x, e; s) = j 
sinh ~ Ys sinh(l- x) Ys 

YssinhZYs 

sinh x Ys sinh(Z - ~) Ys 

YssinhZYs 

for 0 ~ e ~ x 

for x ~ e ~ l. 

To facilitate the inverse transformation we replace the products in the numerators 
by differences thus 

r(x, e; s) = 
2 Vs sinh 1 Ys ~ 

for 0 ~ e ~ x j cosh(x-~-l) Ys - cosh(x + ~-l) Ys 

cosh(~-x-l)Ys-cosh(~+x-l)Vs for x~ e~ l. 
2 Ys sinh 1 Vs 
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The individual fractions are ~-transforms of certain 1?-3-functions, for we can de
monstrate that 

cosh(y-Z) Vs ...!.. ..0. (1- 2..) f 0 < < 21 4r 4r.-o Va ,riO or =" = yssinhl ys Z 2 Z .-

in the manner that was employed for formula (30.10). When inversely transform
ing the function r, we obtain in the first position of the first line 1?-3 (x - E/21, t/12) 
and of the second line 1?-3(E - x/21, t/12). The definition (30.9) dearly shows that 
1?-3 (- v, t) = 1?-3 (v, t); consequently, the two resulting inverse transforms are iden
tical, and We obtain the resulting single expression for the original function of r 

1 [ (~-~ t) (~+~ ')] y(x, E; t) = 2T 1?-a 2'l' 18 -1?-a 2'l' -il 

(17) 

1 +co 
="2 L (X(x - E + 2 " I, t) - X(x + E + 2 " I, t)) • 

• -== - co 

00 

Upon interchanging the ~-transformation with f ... dE, one finds the original 
function of (16); it is: 0 

I 

(18) u(x, t) = f y(x, E; t) uo(E) dE. 
o 

Superposition of the solutions (13) and (18) yields the solution of the boundary 
value problem (1) with (2) and (3). 

Similarly as for the case I = 00, one can now verify that the derived result is a 
solution irrespective of the hypotheses WI, W2, and W3. We can base this verifica
tion upon the result of the case I = 00; in the difficult limiting process for Uo (x, t) 
and r (x, E; t) the middle terms (" = 0) are the only important ones, and these are 
identical with the single terms occurring in the solution for I = 00. Thus, one finds 

Theorem 39.2. The boundary value problem (1), (2) and (3) has the solution which 
is obtained by superposition of (13) and (18), provided the functions ao (t) and al (t) are 
continuous for t > 0, and the function Uo (x) is continuous for 0 < x < I. 

The solution for finite I too is not unique ;for one can find solutions which have 
boundary values zero on all boundaries as, for instance, 

uo(x, t), a-uo(x,t) (t) = 1 0 
at- ' u x, 

Uo (x, t) for t > to. 

for 0 < t ~ to 

These fail to comply with Hypothesis W3. 
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Asymptotic Expansion of the Solution 

The presented solutions of the heat conduction problem are quite clear from a 
purely mathematical point of view; however, they are difficult to evaluate in 
practical applications, and it is not at all obvious how specific boundary conditions 
influence the solution in the interior of the fundamental region.For these inquiries 
one can successfully employ the method of asymptotic expansion as explained in 
Chapter 37. There is another reason why we indicate this method with emphasis: 
When engaged with complicated boundary value problems, it may happen that the 
solution in the image space can be determined with relative ease; however, the 
corresponding original function cannot explicitly be expressed in terms of classical 
transcendental functions. When such is the case, then the development of an asymp
totic expansion based upon the image function may be the only resort to gain insight 
into the sought original/unction. 

We shall show the method of the asymptotic expansion using the example of 
heat conduction in the infinite x-interval. When the initial temperature vanishes, 
the temperature at x = 0 is described by ao (t); and the temperature at x = 00 

remains at zero, then, by Theorem 39.1, we have the solution 

u(x,t) = ao(t) *lp(x, t). 

In order to develop an asymptotic expansion, we must be given ao (t) explicitly. 
We select specifically for the latter the complex oscillation ao(t) = eht, and we 
shall designate the associated specific solution by uw(x, t). 

We start with the corresponding image function: 

U (x s) = Ao(s) e-sVs = _1_. - e-sVs 
CD , $-$eu 

and we first represent Uw (x, t) by the complex inversion integral 

a+iCD 

(19) U (x, t) = _1_. f ets 1. e-sVs ds . 
w 2n~ $-Jeu 

II-leo 

The integrand has a pole at s = i co and a branch point at s = O. These two singular 
points have identical real components, hence both must be considered. Theorem 
37.1 may be invoked, provided we can replace the straight line path of integration 
in (19) by an angular contour with the two centres 0 and i co. V s means principal 
branch;hence, for x > 0, e-zV B is bounded in the entire sheet - 11: < arc s ~ + 11:, 

since m V s ~ 0 in this sheet. The factor l/(s - ico) tends, uniformly on the entire 
plane, towards zero when s -+- 00; consequently, this is truefor U w (x, s). It follows that 
(19) may be evaluated along an angular contour having the half-angle of opening 
11', with 11:/2 < 11' ~ 11:. 

We must expand Uw(x, s) in a series of powers of (s ~ ico) and of s respectively. 
The factor e- Z V 8 is holomorphic at s = i co; hence, it may be expanded thus 

CD 

e-sVs = L c,,(s - i co)" (co = e-s'\I"fcO) . 
.. _0 
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Consequently, we pave 

0) 

Uw(x,s) = LC,,(s-iw),,-l. 
,,-0 

All terms with non-negative integer exponents vanish in the process of inverse 
transformation, and we are left with 

At the point s = 0, we have 
1 0) s" 

s-ico = - L (ico),,+l ' 
,,=0 

and 

hence, 

_ 1 x 1/2 (1 X2) (X3 X) 3/2 
U",(x, s) - - i"(;) + i"(;) s - (i CO)I + 2 i co s + 3 I i co + (i CO)2 s - .... 

This produces, upon inverse transformation, the contribution 

x 
ico 

1 1 (xli X) 1 1 
r(-1/2) t 8/3 + 31 i co + (i CO)8 r(- 3/2) t 6/ S + .... 

Involving the formula 

1 

r(l- v) 
(- W (2 v).! 

4P vi v;i 

we find altogether f~r the asymptotic expansion 

(20) -"0'O+i"" xi 1 (xlii X) 3 1 uw(x,t)FO::Se + 2v;ico t3/2 - 31co +~ 4v;i t5/2 + ... 

as t -+ 00. All terms after the first one tend towards zero when t -+ 00, hence, 
for sufficiently large values of t, the first term alone need be considered. We con
clude that the first term represents the stationary state Uw (x, t) : 

(21) 

In complete analogy to the concepts developed for the solution of ordinary 
differential equations. (p. 96) one could call this function the frequency response; the 
modulus of the factor of ei wt tells the amplitude of U"" its arc indicates the phase 
shift of U"" relative to the boundary excitation ei wt. 
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The frequency response can immediately be read from the image function of 
the general solution 

u (x, s) = Ao(s) e-xVs 

Designating the factor of Ao(s) by G(s), 

we can write the frequency response (or stationary state) in the form 

u., (x, t) = G (i co) eimt • 

We observe that the latter may, bypassing the process of inverse transformation, 
directly be obtained from the solution in the image space. All this is patently analogous 
to the circumstances in Chapter 17.2. 

Notice that Vi = (1 + i)/V2, hence 

and 

Both the amplitude e- X V (1)/2 and the phase shift x/V2co tend{ for any fixed location 
x > 0, monotonically towards zero when co grows. 

We separate the real part and the imaginary part of U w (x, t), and in this manner 
we derive expansion~ for the states corresponding to the respective boundary ex
citations ao(t) = coscot, and ao(t) = sincot; these are: 

X' 1(jjTO/2 ( V-I ) 3 x 1 e- v WI· cos cot - x co 2 - -- - -- + ... 
4 vn 002 t5/2 , 

-x·l(jjTOj2 • ( V-/2) 1 x 1 1 x3 1 e v WI· SIll cot - x co + -- - - - -- - -- + .... 
2 vn 00 t 3/ 2 8 vn 00 t 5/ 2 

These asymptotic expansions permit far easier numerical evaluation when com
pared with the evaluation of U w (x, t) by means of a convolution integral; moreover, 
they provide more inhmate insight into the characteristic behaviour of the solution 
uw(x,t). 

The equation of heat conduction is the normal form of the second order partial 
differential equation of the parabolic type; its solutions are represented by integrals. 
Next, we shall investigate a specifie equation of hyperbolic type, the solution of 
which has a fundamentally different form; therefore, a new element also appears 
in the method of the 52-transformation. The normal form of the equation of the 
hyperbolic type is the wave equation: 

We shall consider a more general form of the equation. 
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2. The Telegraph Equation 

One encounters this equation in the theory of electric transmission lines and in 
other branches of the sciences where media capable of oscillation are investigated. 
Consider an electric double line which extends between x = 0 and x = l, and which 
has, per unit length of line, the following invariant electric characteristics: 

Resistance R, Inductance L, Capacitance C, Leakance G. 

We use t to designate the time variable and find the differential equation 

azu azu au 
ax2 = L C at2 + (R C + L G) at + R G u 

for both the current in the line and the potential difference between the lines. 

Upon introducing L C = a, R C + L G = b, R G = c, 

the partial differential equation becomes 

azu a2u au 
---a---b- - cu=O. ax2 atZ at 

From the physical point of view, all constants, a, band c, are inherently positive; 
for the subsequent mathematical investigations we shall merely require that a > O. 

Starting with a double line which is initially at rest ih which neither current nor 
voltage is recorded at t = 0, we have the initial conditions: 4 

u (x, 0+) = 0, ue(x, 0+) = O. 

Also, the voltage (or the current) at the end points of the line is presumed known; 
that is, we know the boundary conditions: 

u(O+, t) = ao(t), u(l-, t) = aI(t) . 

Employing hypotheses analogous to those introduced in Chapter 39.1, we have, 
for the mixed boundary and initial value problem, the corresponding boundary 
value problem in the image space: 

d2U 
dx2 - (a S2 + b s + c) U = 0, 

U (0+, s) = Ao (s), U (l-, s) = Al (s) . 

We have solved this problem on p. 86; here, we have specifically t(x) == O. Observe 
that here, because of a, b, and c > 0, the expression as2 + bs + c cannot be ne
gative real-valued for ffis > 0; hence, the characteristic values cannot occur 
(compare p. 88). We shall restrict the subsequent considerations to the special case. 
l = 00. The practical consequence of the supposition l = 00 is that reflections ori
ginated at the right boundary need not be considered. In the terminology of 

4 We write briefly u(x,O+) for limu(x,t) , and we shall write u(O+,t) and u(/-,t) instead of limu(x,t) 
1 ... +0 ", ... +0 

and lim u(x,t) respectively. Ue indicates au/Qt. 
lI'+Z-O 
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Theorem 16.1, we have f (00) = 0; hence, zero is the only admissible value for 
U (00, s) and, consequently, also for u (00, t), and we have 

(22) U(x, s) = Ao(s) e-xvaSI+bS+c. 

Here, we encounter a remarkable situation which precludes inverse transforma
tion by means of the Convolution Theorem: the exponential function cannot be a 
~-transform. This fact already becomes obvious for the special case b = c = 0, 
that is for the wave equation (concerning e- a8, compare p. 25). In this case, we 
have 

which indicates that here the Translation Theorem 7.2 is to be applied. In this 
manner, we find 

10 
u(x, t) = 

ao(t - x Va) 
for t< x Va 
for t!5i:; x Va. 

Strictly the same process can be employed to find the inverse transform in the 
case that as2 + bs + cis the exact square of a linear function. This is true when and 
only when the discriminant 

d=ac-(:t 

vanishes; in this special case, we have 

hence 
U(x, s) = Ao(s) e- xya(s+(b/2a» 

and 

(23) u (x, t) = e-(b/2Va)x ao (t - x fa) with ao (t) = 0 when t < O. 

Using the electric characteristics of the line, we find that 

d = L C R G - ! (R C + L G)2 = - ! (R C - L G)2. 

Consequently, the condition d = 0 is equivalent with 

(24) RC=LG or 
R G 
T=c· 

A line having characteristics which satisfy the condition (24) is said to be dis
rorsionless, a designation which will be properly understood only after the solution 
of the general case has been produced. The" signal~' ao (to) is imposed at the location 
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x = ° at the time to; it arrives at some point x > ° at the time t; location x and 
arrival time t are interrelated by 

(25) t - x Va = to , that is t = to + x Va . 

The signal requires a time interval x V a to arrive at x; that is, the speed ot the sig
nal is v = ltV a. The travelling signal does not retain its original strength, it is 
attenuated by the factor exp( - (b/2Va)x). However, the signal is "undistorted" 
insofar as no other signals are superimposed. In the xt-plane, the straight line (25) 
passes through (0, to) having the slope Va. This line is the "world line" of the signal 
or boundary excitation ao (to) in the space-time-world, as shown in Fig. 50. 

: 1 
l.tva 
I 

--- --- -- -- --- -- ~ j 

L-----------------~x~-x 

Figure 50 

In the case that d =1= 0, we sucessfully employ a well known formula of the 
Bessel function: 

'" (_l)ft (Z)2n+l 
fl(Z) = L nl (n + 1)!"2 ' 

n=O 

for we have 

Defining the function v (x, t) thus: 

I 0 for 0 ~ t ~ x Va 
v(x, t) = V- Jl (v'd yez - a xz) 

- X !:... e-(b/2a)t a for t> x Va. 
a ytZ -ax2 

we can rewrite the above formula as follows: 
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Upon multiplying the last equation by Ao (s), we obtain on the right hand side 
two terms: The first term is exactly the one which was encountered in connection 
with the distortionless line; it may be inversely transformed with the aid of the 
Translation Theorem. The second term is a product of two ~-transforms; its original 
function is a convolution. Accordingly, we find: 

(26) I 0 for 0 ;:;; t < x Va , 
U (x, t) = (. r.:\ .f: ft .f: e- b/2v a,,, ao(t - x va) - ao(t - or) vex, or) d. for t> x va. 

"0 

In this case, at the location x and at the time t, there arrives not merely the 
boundary excitation ao (to) with to = t - x Va; instead, it is superimposed with a 
"distortion" which stems from all earlier excitations (0 ~ t - or < t - x va) and 
which represents the remnants of these.5 

Asymptotic Expansion of the Solution 

The expression (26), when explicitly written, is very complicated and difficult to 
evaluate numerically. Moreover, it is very hard to estimate the order of magnitude 
of the second term. Thus, we judge here the development of a clearer represen
tation of the solution by means of the method of asymptotic expansion far more 
desirable than for the equation of heat conduction. 

As boundary excitation we employ, once again, the complex oscillation ao (t) = 

= ei OJ t; this corresponds to the physical application of a sinusoidal voltage which, 
for w = 0, degenerates into a constant voltage. Accordingly, we start with the 
equation: 

1 U (x s) = . e-"Vas'+bs+c 
W I s-zc.o 

and we represent UOJ (x, t) by means of the complex inversion integral: 

a+ia> 

( t) = _1_. f e's-"Vas'+bS+c __ 1_. - ds 
U w x, 2 n $ S - $ W (a> 0). 

a-teo 

We evaluate: 

a S2 + b s + c = L C S2 + (R C + L G) s + R G = L C [S2 + (~ + ~) s + ~ ~ ] 

(27) 

where IXI designates the algebraically larger and 1X2 the smaller of the two numbers 
( - R/L) and ( - G/C). The situation IXI = 1X2 can be dismissed here, since for this 
case condition (24) is satisfied and the solution (23) of the distortionless line is so 
simple that an asymptotic expansion is not needed. 

5 The expression 1 RC - LG 1/2 = V - d may be used as measure of the distortion (see (24)). 
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The function Uw(x, s) has a pole at s = iw and two branch points at the ne
gative real values s = Otl and s = Ot2. We encounter here the special situation that 
first we must apply to the singular point with the largest real component the me
thod for single-valued singularities developed and introduced in Chapter 35; we 
thus move the path of integration past the singular point whilst properly accounting 
for the corresponding residue. Then, at the many-valued singularity corresponding 
to the point with the largest real part, Otl, we must employ the method of 
Chapter 37. 

Selecting {3 so that Otl < {3 < 0, U", (x, s) tends, uniformly in the strip {3 ~ ffis ~ a 
towards zero when s -+ 00, since Vas2 + bs + c behaves, for large I s I, like sVa 
and hence exp (- x Vas2 + bs + c) remains bounded, whilst the factor l/(s - iw} 
tends uniformly towards zero. Thus, we can shift the line of integration to the 
abscissa {3 and separate the residue at i w from Uw (x, t) :6 

(1+.00 

(28) U tII (x, t) = e-%VII('tII)"+bitll+c e itll ' + 2 ~ i f els-%V/lS1+bs+c s _\ ro ds. 
(1-000 

Next, we investigate whether the straight line path of integration can be replaced 
by an angular contour ~ centred at Otl. In all previous applications we argued the 
legality of the change relying on the fact that the function tends uniformly 
between the two paths of integration towards zero when s tends towards 00. For 
the present case, this condition is not satisfied since, for large values of s, U", (x, s) 
behaves like e-xYIiB/s and, for x> 0, Uw tends towards 00, when ffis tends 
towards - 00. Nevertheless, the change of the path of integration can here be 
defended; for this purpose we separate the factor exp( - x Vas2 + bs + c) from 
U til (x, s) and adjoin it with eta, as already indicated in the presentation (28). This 
function behaves, for large s, like 

hence, we are essentially concerned with the integral 

for this we may, with 

(29) 

replace the straight line path of integration by ~. The occurrence of the con
dition (29) is not at all surprising, forwe know from (26) that U w (x, t) is represented 
by distinct analytic functions for t - x Va > 0 and for t - x Va < 0 respectively, 
by zero in the latter region. The ~-integral exclusively represents functions which 

6 When using Theorem 35.1 observe that the Hypothesis 2 of the Theorem, although satisfied in 
our case (compare p. 237), is not really needed here,for it was then required only to develop an estimate 
of the "remainder integral" which is not needed for the present application. 
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are analytic in an angular region of the t-plane (compare Chapter 36); hence it is 
here only useful to represent U w (x, t) along the ray x Va < t < 00 where U w (x, t) is 
analytic. The occurrence of restrictions of this type has been discussed in detail near 
the end of Chapter 36. 

Prior to the application of Theorem 37.1 to the integral along~, we must ex
pand U w (x, s) in a series of powers of s - OC1. The function U w (x, s) has at OC1 a 
branch point of the type V s - OC1, and it is finite at OC1; hence, we conclude that 

the expansion is of the form f co(s - OC1)V/2. Using the substitution s - OC1 = Z2, 
0=0 

we find the expression 
co 

Uw(x, Z2 + al) = L C. Z· • 
• =0 

The technique used to determine coefficients of a Taylor series may be employed 
here to determine the coefficients Co' In this manner, we find 

For the determination of C1, we write U w (x, s) thus 

and we form 

d U w (x, Z2 + OCl) 
dz 

1 .r: ---Uw(x s) = --, - e-xyay(s-a,) (s-a.) 
J S-too 

- x Va [v'Z2 + al - az + Z2 ] (Z2 + al - i 00) - 2 Z 

= e-zyliizY"+u,-a. __ ---'=--____ --:-;;-V~z2_+_a"'-:1 ~-""a,..,,2--=-------_ 
(ZZ + al - i 00)2 

It follows that 

dUW (X,z2 + OCl)1 = _ x V~ ~ 
dz .=0 al-ioo' 

The subsequent coefficients could be determined by the same technique; however, 
the first two, Co and Cl, suffice for the examination of the behaviour of U w (x, t). 
From the expression 

we derive, by Theorem 37.1, the asymptotic expansion of the second term of (28): 
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All terms corresponding to integer powers of (s - lXI) vanish in this process. Thus, 
for u'" (x, t) we obtain the complete asymptotic expansion 

(30) 

as t -+ 00. The second term tends strongly tQwards zero, for growing values of t, 
particularly so since lXI < o. Consequently, the first term alone describes the 
stationary state. At any location x, we encounter an oscillation having the fre
quency of the boundary excitation; the amplitude and the phase of the oscillation 
at x is determined by the modulus and the arc of the factor of the stationary state 

(31) 

When designating the factor of Ao (s) of the general solution (22) in the image space 
by G(s), 

(32) 

then the stationary state Uro (x, t) is given by7 

(33) u",(x,t) = G(iw) e'wt. 

The stationary state may also be called "frequency response". As before on p. 292, 
we call again attention to the complete analogy to formula (17.12). The stationary 
state can immediately be represented by means of the expression G (s) which was 
generated in the image space, without inverse transformation into the original 
space. 

For the distortionless line with d = 0, we have lXI = lX2 = - b/2a = - R/L = 
= - G/C, hence V (s - IXI) (s - 1X2) = (s - lXI); IXI is not a branch point. Therefore, 
the second term of (30) vanishes and u'" (x, t) is completely determined by the first 
term of (30), as shown by a comparison with (23). 

A closer investigation of the frequency response produces several conclusions 
of physical interest. When setting 

G (i w) = e (w) e-i .. rp(ru), which produces it .. (x, t) = e (w) eiru(t-rp( .. » , 

then e (w) and 'IjJ (w) are respectively amplitude and phase shift of U'" (x, t) referred 
to the boundary excitation ef, '" t. With 

7 As remarked on p. 96, the representation (17.1 1) holds for an imagefunction of the form G(s)/ 
(s-i",) not only when G(s) is a rational function but actually for every I)-transform which converges 
on the imaginary line; this formula cannot be employed here since the function G (s) of (32) is not a 
I)-transform. 
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(see Fig. 51), we find 

G (i w) = exp (- x Va ('1 '2)1/2 ei (IP.+IP,)/2) , 

hence 

(34) 
() .r: ("I "2) 1/2. 'PI + 'Pa 

1pw =xya-w- sm 2 . 

We wish to determine the behaviour of these quantities for large and for small fre
quencies w respectively; for this purpose we study two limiting cases, w = 0 and 
w -+ 00. 

iw 

1 
ttl 

Figure 51 

The Behaviour of the Amplitude 

1. w = O. The boundary excitation ao (t) becomes the unit step function u (t) 
(constant voltage). In this case, we find CP1 = CP2 = 0, '1 = - lXI, ;2 = - 1X2, and 

2. w -+ 00 . We use 

and 

hence 

(35) 

Also, we have 

cos2 'PI + 'Pz 
2 

1 + COs( 'PI + 'Pa) 
2 

(36) ( a 2 )1/2 ( a 2 )1/2 '1 '2 = [(W2 + an (w2 + ai)J1/2 = w2 1 + ; 1 +~} , 

hence, for w > 11X11 > 11X2 J, 

, , = w2 1 + __ 1 + _1 +... 1 + __ 2 + _2 + ... ( 1 a 2 ( 1/2) a' ) ( 1 a 2 ( 1/2) a' ) 
1 2 2 w2 2 w' 2 002 2 w' 
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(37) =002 [1+ a11 ;al c!s +O(~,)].=WIl+ a1;al +0(;') as 00-+00, 

Whence, one finds 

l' l' coss 'P1 + 'PI = . ..!.. [ ala + a:f + + 0 (_1_)] (a1 + aa)1 • 
12 2 2 2 alaS or -+ 4 ' 

that is, 
lim e(w) = e-~v'ii<la,1 + 1 ... 11I 2 • 

01-+<0 

The geometric mean of two distinct numbers I ocli and I oc21 is always smaller 
than the arithmetic mean: 

hence, 
e(O»e(oo)· 

Forming the derivative with respect to 00 of the function 

we observe, for OCl of OC2, that 00 = 0 is the only point where the derivative vanishes; 
the only extremum of the above function is at 00 = O. Therefore, the function is 
monotonic in (0, 00). Thus, we conclude: 

At every location x> 0, the amplitude e(w) decreases monotonically with in
creasing frequency; oscillations with higher frequency are more strongly attenuated 
than those with lower frequency . We have 

(38) 

We use 

hence (compare (35)) 

The Behaviour of the Phase Shift 

sin II 'P1 + 'Ps 
2 

1 - COS('P1 + 'P2) 
2 

39) I'll'S • II 'P1 + 'Ps 1 
( ---;;T" sm 2 = 2 o:l- (1'1 r 2 - a l as + WI) • 

Also (compare (36)) 
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( 1 0:} (1/2) w' ) ( 1 w2 (1/2) £0' ) 
1'1 f2 = a l a 2 1 +"2 alB + 2 at + . .. 1 + "2 ai + 2 at + ... 

Consequently, 

as w ~ 0, hence (y- y-) . - 1 az a1 hm tp(w) = x Va - - + -. 
",_0 2 a l az 

Moreover, (39) and (37) imply that 

"I "s sin 2 fIJI + flJz = _1_ [2 w2 + af + ai _ a a + 0(_1_)] 
wB 2 2 wB 2 1 2 wB 

= 1 + (al -as)2 + 0(_1_) -1 as w _ 00, 
4w2 W' 

hence 

lim tp(w) = x Va. 
",_co 

For every positive z =!= 1, it is true that (z + l/z) > 2; thus, 

that is 

tp(O+) >tp(oo). 

One can easily verify that the derivative of tp2 (w) vanishes only for w = ° and 
for w = 00, the only locations of extrema. Therefore, tp(w) is monotonic in (0, 00), 
and we conclude: 

At every location x> 0, the phase shift tp(w) decreases monotonically with in
creasing frequency; oscillations with higher frequency are less phase shifted than those 
with lower frequency . We have: 

tp (0+) = X Va .!.. (1/ as + 1 / a1 ) = x _b = .!..~ x (c 1 / R + L 1 / G ) , 
2 Val Vaz 2Vc 2 VG VR 

tp( (0) = X Va = x \h c . 
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40. Integral Equ~tions 

The equations in the unknown 1 (t) of the form , t 

f k (t, T) 1 (T) dT = g (t) and t (t) = g (t) + f k (t, T) 1 (T) dT 
o o 

are known as V oUerra linear integral equations 01 the first and second kind respectively. 
These integral equations are of the convolution type, provided the kernel k (t, T) is 
a function of (t - T) only. These latter equations can be changed into algebraic 
equations by the ~-transformation, invoking the Convolution Theorem. Applying 
the inverse Laplace transformation to the solution of the algebraic equation, one 
obtains the solution of the integral equation. 

1. The Linear Integral Equation of the Second Kind, of the Convolution Type 

One can apply the ~-transformation to the-equation 

t 

(1) I(t)=g(t) + Sk(t-T)/(T)dT, 
o 

provided the following hypothesis is satisfied: we need the convergence of 

£{/} = F(s), £{k} = K(s), and £{g} = G(s) 

in some half-plane, where ~{k} converges absolutely. Then we can find the image 
equation of (1); it is, by Theorem 10,4, 

(2) 

which has the solution 

F(s) = G(s) + K(s) F(s) , 

G(s) 
F(s) = 1- K(s) 

The function [1 - K (S)J-l converges for s -+ 00, not towards zero, but towards 1; 
thus it is not a ~-transform. It is for this reason that F (s) cannot be transformed 
into the original space in its presented form. However, upon rewriting F (s) in 
the form 

(3) 
K(s) 

F(s) = G(s) + l-K(s) G(s), 

we can determine 1 (t). The function 

z co 

1-z = ,Lz" 
.. =1 
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is holomorphic at z = 0, where it has value 0, and the series representation con
verges in the circular disc \z\ < 1. ~{k} converges absolutely in some half-plane 
ffis> lX, hence by the Supplement of Theorem 30.4 we recognize 

(4) 

as the ~-transform of 

(5) 

K(s) 
Q (s) = 1 - K (s) 

co 

q(t) = k(t) + L k(t)*n, 
,,=2 

provided k (t) is a ::So-function. Theorem 23.7 guarantees that \ K (s) \ < 1 in some 
half-plane ffis ~ Xo > lX, and one concludes that ~{q} converges absolutely for 
ffis ~ Xo. Invoking the Convolution Theorem we recognize Q (s) G (s) as the ~
transform of q * g; hence, by the Uniqueness Theorem 5.1, it follows from (3) that 

(6) I(t) = g(t) + q(t) • g(t) + n(t), 

where n (t) designates some null function. Under the specified hypothesis, there can 
be no other solution than (6). 

The verification of this function as a solution follows from the fact that (6) im
plies (3) which, in turn, implies (2), and finally 

1 (t) = g (t) + k (t) • 1 (t) + nI(t) , 

where nl (t) designates some null function. A null function vanishes almost every
where, hence f (t) satisfies (1) almost everywhere, in particular when we select n (t) "'" 
"'" 0 in (6). Thus, we have established 

Theorem 40.1. When g (t) has a simply converging ~-transform and when the ::So
function k (t) has an absolutely converging ~-transform, then 

t 

(7) I(t) = g(t) + S q(t - T) g(T) dT, 
o 

where q (t) is defined by (5), satisfies the integral equation (1) almost everywhere. 

The function q (t) is the to k (t) reciprocal kervel. Eq. (4) implies that 

Q(s) - K(s) = K(s) Q(s), 

hence, almost everywhere, 

t 

q(t) - k(t) = S k(T) q(t - T) dT. 
o 
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Each of the two kernels, q (t) and k (t), can be obtained from the other as the 
solution of an integral equation. The representation (5) of q as the sum of "iter
ated kernels" k*n is known as Neumann series. 

Employing the principle of extension (see p. 74), we can relax the hypothesis 
concerning the existence of tl{g} and of tl{ k } as follows: we inveStigate the function 
(7) irrespective of the manner of its derivation, and we enumerate the conditions 
which must be satisfied so that (7) is a solution of the integral equation (1). For 
this purpose we may presume that the integral equation is given only in some 
finite interval 0 ~ t ~ T, for we encounter in the integral equation as well as'in its 
solution only integrals over bounded intervals. (Our tacit assumption of the inter
val 0 ~ t < 00 in the above derivation merely reflects our involvement with the 
tl-transformation.) 

There are several sets-of conditions, each of which guarantees (7) as a solution 
of (1). We present here the conditions enumerated in the following theorem. 

Theorem 40.2. When in the interval 0 ~ t ~ T, g (t) is integrable and k (t) is inte
grable and bounded, then the integral equation (1) has the solution (7). The function q (t) 
is defined by the series (5) which converges absolutely and uniformly in 0 ~ t ~ T. The 
functions [g(t) - k(t)] and [/(t) - g(t)] are continuous. 

Proof: Using I k (t) I ~ M in 0 ~ t ~ T, we find 

t I 

Ik*21= f k(1')k(t-1')d1' \;;aM2 t , 

Ik*SI=lj k*2(1')k(t-1')d1' ;;aM3j1'd1'=M3~~, 
10 0 

t 

I k * n I = f k· (n -1) (1') k (t - 1') d1' 
o 

f T,,-2 t,,-1 
~ M" -,----'7:- d l' = M" -,----,;-:-:-

(n-2)! (n-1)1 
o 

hence, 

co co t,,-1 co T,,-1 

Ik(t)/+ ,,~/k(t)O"/~,,~M" (n_i)T;;a,,~M" (n-1)! =MeMT • 

This demonstrates that the series representation (5) of q (t) converges absolutely 
and uniformly on 0 ~. t ~ T. Hence, we may multiply it by the bounded function 
k(t - 1'), and then integrate the product term by term: 

rq(1')k(t-1')d1'=k*q=h k+Lk on =Lk*", 
e ( 00 ) 00 

~ .. =2 .. =2 

Defining the function f (t) by 

f=g+q*·g, 
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we find 

=q·g=t-g· 

This shows that t satisfies (1). 
The convolutions k*n (n ~ 2) are continuous on 0 ;;;; t ;;;; T according to Theo

rems 10.2 and 10.3. The uniform convergence of the series implies continuity of 
co 

q(t) - k(t) = L k*n. 
n=2 

The function k (t) is bounded, hence k * t is continuous on 0 ;;;; t ;;;; T; it follows 
that t(t) - g(t) too is continuous. 

The immediate determination of q (t) by formula (5) through evaluation of the 
convolution integrals is practically possible only for few problems. A more promis
ing route is to firstly determine the powers Kn (s) and subsequently return these 
to the original space. One can sometimes inversely transform Q (s) immediately by 
starting with (4); this is the case, for instance, when k(t) is a polynomial: 

k (t) = ao + at t + ... + ar ( , 

hence 

K(s) = ~ + 11 al + ... + rl ar 
5 s'A 5,+1 

and, consequently, 
K(5) ao5r+llal5,-1+"'+r!ar 

Q (s) = l-K (5) = sr+ 1 _ an sf' -1 I ~ s,-1 - ... - rl a. 

This is a rational function, the polynomial in the numerator being of lower degree 
than the polynomial in the denominator. Thus, one can employ the partial fraction 
expansion (see p. 76), to transform Q (s) into the original space. When k (t) is a 
continuous function, then one can approximate it, arbitrarily closely, by a poly
nomial, and thus finally produce an approximate solution. 

The integral equation 

t 

t(t) =g(t) + f[1-Ct-T) + ~ (t-T)2] f(T)dT 
o 

is presented here as an example. In this case, we have 

k(t) = 1 - t + ~ t2, K(s) = : - ~ + ~ , 
1 1 1 3 
:rs'A-s+l - -5--

--,:------,;;--_----:- = _4_ +;{ 4 
s'A-s'A+s-l 5-1 s'A+l Q(s) = 

1 t 1 3 . 
q (t) = "4 e +"4 cos t - "4 Sill t . 
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Thus, we find the solution: , 
f(t} = g(t} + ! f (eT + COST - S sin 1') g(t - T} dT. 

o 

In the case that k (t) is a polynomial of exponential functions: 

k(t} = ao eGo' + ... + ar ea,.t , 

one finds g (t) by a similar process. For those cases where 1 (t) cannot be determined 
explicitly, one may resort succesfully to the technique of asymptotic expansion, 
which was shown in Chapters 35 and 37. 

2. The Linear Integral Equation of the First Kind, of the Convolution Type 

The equation in the unknown 1 (t) 

(8) 

, 
f k (t - 1') 1 (1') dT = g (t) 
o 

requires stringent hypotheses to guarantee the existence of a solution. One may 
consider the left hand side of (8) as a functional transformation which transforms 
the function 1 (t) into a function g (t). Thus, one sees that the question whether or 
not (8) has a solution 1 (t) is equivalent to the new question whether or not g (t) 
can be represented as a transform. It is clear that, in general, the answer is nega
tive. 

The immediate application of the ~-transformation is bound to fail, for the 
image equation 

has the solution 

(9) 

K(s) F(s) = G(s) 

G(s) 
F(s) = K(s) ; 

however, 11K (s) tends towards 00 when s ~ 00, hence it certainly cannot be a ~
transform, and the Convolution Theorem cannot be employed. 

There are cases of integral equations of-the first kind which can be reduced to 
integral equations 01 the second kind. When k (t) is differentiable for t > 0, k' (t) is a 
~o-function, and when, moreover, g(t) is differentiable for t> 0, and when a 
solution 1 (t), continuous for t > 0, exists, then we have, by Theorem 10.5, 

, 
k(O+) I(t) + S k' (t - 1') 1(1') 0,1' = g'(t) for t > O. 

o 

For k (O+) =1= 0, this is an integral equation of the second kind which may be solved 
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by the method shown above. When k (0+) = 0, then possibly both k (t) and g (t) 
have (n + 1) derivatives (n ~ 1), and k (0+) = k' (0+) = ... k(n-l) (0+) = 0, whilst 
k(n) (0+) =F 0; then, one finds: 

t 

k(n) (0+) I (t) + S k(n +1) (t - T) I (T) dT = g(n +1) (t), 
o 

once again, an integral equation of the second kind. 
When k' (t) fails to be integrable and k (0+) does not exist, a situation which is 

shown by the example k (t) == t- IX , with 0 < ex < 1, then the above method 
cannot be applied. For such cases the following method may sometimes prove 
successful: Instead of the function I (t), one enters its integral 

t 

S I(T) dT = I. 1 = qJ(t) 
o 

as the unknown in the integral equation. When I has the ~-transform F, then qJ has 
a ~-transform which, by Theorem 8.1, is given by 

1 
~ {qJ} = 4>(s) = s F(s). 

Instead of Eq. (9) one finds 

Although 1IK(s) is not a ~-transform, 1/[sK(s)] may, nevertheless, be one. In this 
case, qJ (t) can be obtained by means of the Convolution Theorem. The sought 
function I(t) is found (almost everywhere) by differentiation of qJ(t). 

A famous example which can be solved by the above indicated substitution is 

the Abel Integral Equation 

which was originally encountered in physics as the generalization of the problem 
of the tautochrone and has the form 

, 
(10) f (t - Tr a d~;T) dT = g(t) (0 < a < 1). 

o 

The substitution y' = I would produce an equation of the form (8). However, we 
deliberately retain y' in the equation, for this is equivalent to the above sugges
ted substitution y = I * 1; exactly this will enable us to produce the solution. 

We assume that y' is a ~o-function and that its ~-transform does exist. Conse
quently, by Theorem 10.2, the left hand side of (10) is continuous and it has, by 
Theorem 10.4, a ~-transform. Consequently, we must assume these two properties 
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for the function g(t) on the right hand side of (10). The image equation of (10) is 
given by 

F(1"- a) [s y (s) - y (0+)] = G (s), 
51 - a 

which has the solution 

y (s) = y (0+) + 1 G (s) . 
5 F(l -a) sa 

The corresponding original function is 

Y (t) = Y (0+) + F(l _~) F(a) ta -1 * g (t) + null function. 

By hypothesis, y(t) is differentiable, hence it is continuous; also ta- 1 *g(t) is 
continuous. It follows that the null function vanishes identically. Thus, we are 
left with 

1 
y(t) = y(O+) + F(l-a) F(a) ta- 1 *g(t) 

(11) 

= y(O+) + sin a .1t ta-1 * g(t) . 
.1t 

y' occurs in the integral equation; thus, we must be able to produce the derivative. 
According to Theorem 10.5, this is possible when g (t) is differentiable for t > 0 and 
continuous at t = 0, and g' (t) is a So-function. We then find: 

(12) y' (t) = sin a .1t [ta -1 * g' (t) + g (0) ta -1]. 
.1t 

The above specified hypothesis that y' is a So-function and has a ~-transform is 
satisfied whenever g' (t) has these properties. The equations (10) to (12) can also be 
derived in inverse order, hence (12) and (11) respectively represent a solution of 
(10). This conclusion is summarized in 

Theorem 40.3 .. Suppose that g (t) is differentiable for t > 0 and continuous at 
t = 0) and that g' (t) is a So-function which has a ~-transform. Then, the only solution 
of (10), the derivative of which is a So-ftmction and has a ~-transform, is the function 
(11) with the derivative (12). 

Once again, we can relax the hypothesis regarding the existence of the ~-trans
forms, and also consider for the integral equation a finite interval instead of 0 ~ t< 
< 00. For 0 < IX < 1, we find: 

ra * ta-1 o-e F(l - a) Fs(aa) = F(l - a) F(a) .-<> r(l _ a) r(a) = _. _.1t_ 
5 1 - a 5' Slna.1t ' 



40. Integral Equations 311 

hence. when g' (t) is a ::So-function. and y' (t) is given by (12). then we have 

t-a • y' (t) = 1 • g' (t) + g (0) = g (t) 

in every interval where g(t) is defined. Moreover. (12) is the only solution (dis
regarding the trivial addition of null functions). for. when two different solutions 
are given. then there is a solution =1= 0 of 

t-a .y' = 0; 

this implies that 

:n; 
ta-1.t-a.y' = -.--1.y' =0' Slna n • 

that is. y' is a null function. Obviously. the function y (t) is determined up to the 
constant y (0+). 

Theorem 40.4. Suppose that g(t) is differentiable in 0 < t ::£ T and continuous at 
t = 0; suppose. lurther. that g' (t) is a ::So-Iunction. Then the integral equation (10) in 
0< t ;;;;.T has the unique solution (12) lor y' (t). and y (t) is given by (11). with arbitrary 
y (0+). The lunction y' (t) is continuous in 0 < t ;;;;. T. 

An intuitive interpretation can be provided for the Abel integral equation and 
its solution. Integration of a function I (t) It times between 0 and the variable upper 
limit t is equivalent to It-fold convolution with 1: 

II-' I = 1.1·1-'. 

According to (ILl). we can represent II-'I by a simple integral 

t 

(13) II-' I = r~,ul f 1(-,;) (t - -,;) 1-'-1 d-,;. 

The last expression is meaningful not only for natural numbers It = I. 2. 3 •...• 
but also for every real number It > O. By means of (13). one can define the It-Iold 
integral 01 the lunction I. lor It > 0 ("integral" here not in the sense of primitive 
function. but in the sense of definite integral between 0 and t). When interpreting 
It-Iold differentiation DI-' as the inverse of the above process. then DI-'I is the solution 
z (t) of the equation 

t 

(14) r~,ul [ z (-,;) (t - -,;)1-' -1 d-,; = I (t) . 

Obviously. for 0<1t < I. this equation is equivalent to the Abel integral equation. 
Hence its solution y' (with g(t) = F(It) I(t). oc = 1 - p,) provides the definition 
of DI-'I. for 0 < It < 1; it is 

(15) DI-' I = r(l ~ ,ul [t-I-'.I' (t) + 1(0) t-I-'] (0 < ,u < 1). 
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where one must presume that I (t) is differentiable for t > 0 and continuous at 
t = 0, and that f' (t) is a So-function. 

When using expression (11) for y (t) instead of the explicit formula (12) for 
y' (t), one finds 

(16) (0 < '" < 1). 

Expression (16) indicates (1 - ",)-fold integration followed by one differentiation. 
One can interpret this as the annulment of one integration by one differentiation, 
and one is left with ( - ",)-fold integration. That is, DJI. appears formally as I-Jl., 
a property which nicely agrees with the definition of DJI. as the inverse of IJI.. 

So far we required 0 < '" < 1. For natural numbers '" = n = 1, 2, 3, ... , 
equation (14) is equivalent to z * 1 *n = I; and one finds z = Dnl, almost everywhere, 
by n-fold differentiation of I (t). Dnl is identical to I(n) (t), provided one understands 
the latter as generalized differentiation in the sense of p. 41. 

When '" is not a natural number, 1 ~ n < '" < n + 1, then we differentiate (14) 
n times, provided I(n) exists, and we obtain 

t 

F(/-n) f z(l') (t _l')JI.-n-l dT = I(n) (t) (0 < '" - n < 1) , 
o 

thus once again creating Eq. (14), with 0 < '" < 1. From Eq. (16), we find: 

(17) 
d {t-(p-n) } d DJI. 1= - ./(n) = - {11 -(JI.-n) I(n)}. 
dt r(l-(,u-n)) de 

This formula becomes intelligible, when differentiation is replaced by the opera
tor D: 

DJI. I =- D 11 - JI. + n Dn I. 

D I and In Dn produce the identity and, formally, there remains the equation 

DJl.I=I-"I· 



APPENDIX 

Some Concepts and Theorems from the Theory of Distributions 

I t is presumed that the reader is familiar with the theory of distributions as intro
duced by L. Schwartz. The most comprehensive presentation of this theory is 
given by L. SCHWARTZ [1]: Theorie des distributions, Nouvelle edition. Hermann, 
Paris 1966,420 pages. Shorter and less demanding expositions can be found in the 
books: L. SCHWARTZ [2]: Methodes mathematiques pour les sciences physiques. 
Hermann, Paris 1965, 312 pages; A.H. ZEMANIAN: Distribution Theory and Trans
form Analysis. McGraw-Hill Book Co., New York 1965, XVIII + 371 pages. 

A summary of several concepts and terms has been compiled for clarity's sake; 
theorems employed in the text are presented to permit brief reference. 

1. All real-valued or complex-valued functions of a single real variable tare, 
in principle, defined on the entire real line : - 00 < t < + 00, designated by RI. 

2. A compact set of Rl is a closed and bounded set. 
3. Given a continuous function qJ (t) on RI, the support of qJ (t) is the smallest 

closed set which contains all points t where qJ (t) =1= o. 
4. A test function qJ (t) is a function which has derivatives of all orders, and a 

compact support; hence the test function qJ(t) assumes the value zero outside 
some bounded interval of RI. 

5. The space £1) is the set of all test functions. 
6. A functional maps a set of functions to the complex numbers; that is, it 

assigns to every function of the set one complex number. A distribution is a linear 
and continuous functional defined on £1). 

7. The space £1)' is the set of all distributions. 
8. We shall use <T, qJ> to designate the (complex) number assigned to the 

test function qJ E £1), by the distribution T. 
9. A locally integrable l function f (t) defines a functional by means of the for

mula 
+co 

S f (t) qJ (t) dt = <f, qJ> • 
-co 

We shall call this distribution the function-distribution generated by f(t), and we 
shall designate the function-distribution by f or by [fJ, using the latter designation 
when confusion with the function f could occur. Occasionally we shall use the term 
function instead of function-distribution. 

1 All integrals are understood as Lebesgue integrals. 
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10. Two distributions T and U are called equal in some open set G of Rl (G may 
be the entire real line Rl) if and only if <T, lfJ> = <U, lfJ> for every lfJ E p) which 
has its support entirely in G. In particular, T may be equal in G to some function
distribution [f], in which case we shall write T = f (in G); for instance, T = 0 in G. 

11. The support of some distribution T is the smallest closed subset of Rl, out
side of which T = O. 

12. The support of the function-distribution [fJ generated by the continuous 
function f is identical to the support of the function f (t). 

13. The ktn distribution-derivative2 Dk T of some distribution T is defined by 
means of the formula: 

<Dk T, lfJ (t» = (-l)k <T, lfJ(k) (t». 

Specifically, for a function-distribution [fJ, generated by the locally integrable 
function f, we find: 

+00 

<Dk f, lfJ (t) > = (_1)k S f(t) lfJ(k) (t) dt. 
- 00 

Every locally integrable function has distribution-derivatives of all orders. 

14. Suppose that the ktn derivative f(k) (t) of some function f (t) exists for all t 
in Rl and is locally integrable; then we have 

Dk [fJ = [f(k) (t)J . 

15. We define the unit step function as follows: 

and we set 
u (t) = 0 for t ~ 0, and u (t) = 1 for t > 0, 

Du(t) = ~. 

The distribution ~ has the property: 

<~, lfJ> = lfJ (0). 

We recall No. 10, and we conclude that ~ = 0 in both t < 0 and t> O. 

16. Yielding to the common practice used in physics, we shall make an excep
tion by designating the distribution-derivatives of the distribution ~, as for deriva
tives of functions, by short strokes or by superscripts in round brackets. Moreover, 
with (j and its distribution-derivatives one often finds the variable of the real line 
Rl, over which these are defined, written in round brackets after the respective 
symbol as is customary for functions: 

~ = ~(t), D~ = (j'(t) , ~ .. , 
The distribution-derivatives of ~ have the property: 

<~', lfJ> = lfJ' (0), <~(k), lfJ> = lfJ(k) (0). 

All distributions~, ~', ... , ~(k), ... have as support the single point t = O. 

2 Another frequently used term is generalized derivative. 
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17. The distribution-derivative of the unit step function u(t - a) having the 
jumping point at t = a is designated in the following manner: 

D u (t - a) = <5a . 

However, one occasionally writes 

D u (t - a) = <5 (t - a) , 

employing the notation as explained in No. 16. The distribution-derivatives are 
designated thus: 

D<5(t - a) = <5'(t - a), 

These distributions have the property 

Dk <5 (t - a) = <5(k) (t - a) . 

<() (t - a), rp> = rp (a), <()'(t - a), rp> = rp' (a), ... , <<5(k) (t - a), rp> = rp(k) (a). 

18. Suppose that a(t) is a function which has derivatives of all orders in RI. 
We define the product of some distribution T with a(t) by means of the formula: 

<a(t) T,rp> = <T,arp>. 

19. Suppose that a (t) is a function which has derivatives of all orders in RI; 
the distribution-derivative 01 the product of some distribution T with a (t) can be 
determined by the formal application of the same rule which is used to find the 
derivative of a product of two functions: 

D [a(t) T] = a' (t) T + a(t) D T. 

In like manner, for the distribution-derivatives of higher order one finds: 

k 

Dk [a (t) T] = L e) aM (t) Dk-o T , 
0=0 

a formula which is analogous to Leibniz' formula. 

20. One can generalize No. 14: If I(k) (t) exists for all t with the exception 01 
the point t = a, and represents a locally integrable function, and if moreover, for 
both limiting processes t ~ a - 0 and t ~ a + 0 the limits 

1 (a-) , 

1 (a+) , 
do exist; then one finds 

f' (a-) , 

f' (a+) , 

Dk [tJ = [f(k) (t)J + [f(k-l) (a+) - f(k-l) (a-)] () (t - a) 

+ [f(k-2) (a+) - l(k-2) (a-)] <5'(t - a) 

+ ......................... . 
+ [f(a+) -f(a-)] <5(k-I)(t -a). 
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This theorem can be extended to a finite number of, or countably many, isolated 
exceptional points ai. 

21. If 1 (t) is not locally integrable, then it may happen that the diverging inte-
+00 

gral f 1 (t) q; (t) dt = <I, q;> has a "finite part" (partie finie) as defined by Hada-
-co 

mard, designated by Pf <I, q;>. If the functional Pf <I, q;> agrees with the func
tional defined by some distribution T: 

Pf <I, q;> = <T, q;>, 

then the function I(t) is said to define the distribution T. One writes briefly: 

Pf/(t) =T. 

We call Pf I(t) a pseudolunction-distribution, or, more briefly, a pseudo/unction.3 

22. Only "right-sided" functions are of interest for the Laplace transformation; 
these are functions which are specified to be zero for t < 0 and which consequently 
should properly be written in the form / (t) u (t). The most important pseudofunc
tions are the powers t-Au (t) with A ~ 1. These give rise to the following distribu
tions:4 

(a) 

(b) 

(c) 

(d) 

Pf [t-1u(t)] = D [logt· u(t)] 

Pf [t-2u(t)] = _D2 [logt· u(t)] - b'(t) 
(_1)n-l 

Pf [t-nu (t)] = (n _ 1)! {Dn [logt . u (t)J + (tp(n) + C) b(n -1) (tn 

(_ 1)n-l 
(n -1)! Dn ([logt + tp(n) + C] u(tn (n = 1, 2, ... ) 

with tp (n) + C = 1 + t + ... + n ~ 1 (n ~ 2), tp (1) = - C 

(C = Euler's constant) 

Pf [t-A u (t)] = (- 1)n Dn [t-Hn U (t)] 
(A. - 1) ... (A. - n) 

(A> 1 not an integer, -A + n > -1, n an integer). 

Formulae (a) and (d) are also correct in the classical analysis, provided we 
replace the distribution-derivatives on the right hand side by derivatives and 
omit the symbol Pf on the left hand side. Formulae (b) and (d) differ from the 
classical formulae by the occurrence of b-distributions. 

3 The symbol Pf could be read here as abbreviation of "pseudofunction". 

4 The functions on the right hand side are locally integrable, hence the distribution·derivatives of 
these do exist; they are distributions. 
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Table of Laplace Transforms 

F(s) 

F(as) (a>O) 

F(s + ex) 

F (as + {3) (a > 0, {3 complex) 

e-aBF(s) (a ~ 0) 

F'(S) 

F(n) (s) 

sF(s) - 1(0+) 

sF(s) 

n-l 
snF(s) - 2.: l(k)(O+)sn-k-l 

1 
sF(s) 

F(Vs) 

k~O 

x+ico 

2~i f Ft(O') F2 (s - 0') dO' 
x -ic.o 

Operations 

! t(~) 
e-rx t I (t) 

1 -!!...tl(t) -e" -a a 

I (t) 

{ I (t - a) for t ~ a} 
o for t :.;. a = I (t - a) u (t - a) 

- tl(t) 

(-t)nl(t) 

f' (t) 

DI(t) 

I(n) (t) 

Dnl(t) 

t 

f 1(.) d. = l(t)*1 
o 

co 

f tp (., t) I (T) dT 
o 

t 

f It (.) /2 (t - T) dT = It (t) * 12 (t) 
o 

It (t) . /2 (t) 



318 

Nr. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Table of Laplace Transforms 

Functions and Distributions 

F(s) 

1 

sn (n =1,2, ... ) 

sa (a > 0, a 9= 1,2, ... ) 

1 
s 

1 
s-a 

1 
1+Ts 

1 
$a 

1 
(s - a)B 

1 
s(s - a) 

1 
s(1 +Ts) 

1 
(or: 9= fJ) 

(s - a) (s - fJ) 

1 
(1 + TS)B 

1 
(1 + as) (1 + bs) (a 9= b) 

a 
S2+ a2 

a 
sa - a2 

c -..2.-D 1 ( c2 ) 
S2 + Cl S + Co 0 4-

s 
(s - a)2 

d(t) 

d(1t) (t) 

t-a - 1 

Pi r(-a) u(t) 

f(t) 

= - Pf ! F(a + 1) sinna t}+1 u(t) 

u (t) = 1 for t > 0, = 0 for t < 0 

t 

1 
-(e..t-1) 
a 

e'U- elH 

a-fJ 
1 _1-

"f2 te 2' 

sin at 

sinh at 

'V~D e-{'-tsinhV-Dt (D<O) 

1 _E!.t V-- .) we 2 sinwt (D>O, -D =~w 

_E!.t 
te 2 (D = 0) 

(1 -tor: t) ea.t 
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Nr. F(s) 

18 5 

(IX * (J) (5 - tx) (5 - fJ) 

19 5 

5 2 + as 

20 5 

5 2 - as 

21 5 sinb + a cosb 
5 2 + as 

22 5 coso - a sinb 

52+ a2 

23 1 
- (n =1, 2, ... ) 
5" 

24 1 
( ) (n = 1,2, ... ) 
5 - tx" 

25 : (1- : t 

26 :a (IX arbitrarily real) 

27 1 

Vs 

28 1 

Vs + tx 

29 1 

Vs+a 

30 1 
Ssi2 

31 1 
s"+t 

32 1 

VS2+ a2 

33 1 (m" > -1) (S2 + a2)" +t 

34 (VS2 +1X2 -S)" (}Jl'V > 0) 

txeal - fJePI 

tx-fJ 

cos at 

cosh at 

sin (at + b) 

cos (at + b) 

1 tn - 1 
(n -1)! 

1 tn- 1 e",t 
(n -1)! 

I (t) 

el d" 
L (t) = --- (tne- t ) n n! dtn 

t4 - 1 

r(tx) u (t) for IX > 0 

(Laguerre 
Polynomials) 

ta - 1 

Pf r(tx) u(t) for IX < 0, IX * -I, -2, .. . 

1 

Vnt 
e- at 

Vnt 

«5(n) (t) for IX = -:-n = 0, -I, - 2, .. . 

_1 __ aea2t erfc (a Vt) 
V1tt 

2l/I 
4"n! 

--;-;=- tn-i 
(2n)! Vn 

10 (at) 

V7t ) 
r(v + !) (;a "1,,(at) 

Vtx" 
-t- 1,,(lXt) 
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Nr. 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

F(s) 

Vs-oc-Vs-{J 

1 5 + a 
og 5 _ a 

5-a 
log--s=b 

52 + a2 

log 52 + b2 

logs + C 

s (log s + C -1) 

sn (log s - 1p(n + 1)) 
(n = 0, 1, ... ) 

log V s2 + a2 + C 

e-TB (T > 0) 
e-Ta 

-5- (T> 0) 

1 -~ -e 4, 
5 

1 -~ --e 4. (ffiv > -1) sv+1 

e-aVs (a>O) 

y~ e-aVS (a ~ 0) 

1p (a, s) 

x(a, s) 

1 -aVs ( ) -e a~O 
5 

Table of Laplace Transforms 

f (t) 

(XV Iv ((Xt) 

1 
~(e{lt-elXt) 
2t Y7tt 

-logt - C 

~ sinh at 

2 
T (cos bt - cos at) 

1 
-PfTu(t) 

1 
Pf tiu(t) 

Pf cos at u (t) 
t 

(j(t - T) 

u(t - T) 

Jo(a Vt) 

(!r t f Jp(aVt) 
a' a --

1p (a, t) = 2 y7t t3/2 e 4t 

1 -~ 
x(a t) = -=e 4t 

, Y7tt 

sina Yt 
7t 

cosa Yt 
7t Yt 

00 

a 2 S -u2d erfc -Y- = -Y- e u 
~. 2 t 7t 

a/2Vf 



Nr. 

54 

55 

56 

57 

58 

.59 

60 

F(s) 

1 a 
---=sin-Vs s 

1 a 
Vi cos s 

;5 e-ViiS sin Vas 

1 ViiS -Vi e- as cos Vas 

I' 

e4 erfc~ 
2 

a 
arctg s 

sinhx VS 
sinhl Vs (Ixl<l) 

Table of Laplace Transforms 

I (t) 

sinh V2tit sin V2tit 
V7tt 

cosh l'2ti"i cos V2tit 
V7tt 

1 . a 
ht sm"2t 

1 a 
V7tt cos"2t 

2 -tl 

Vi" e 

sin at 
t 

1 a (l-X t) 
T --aiDa 21' Ta 

00 

= L 1p(2nl+l-x,t) 
n=-W 

321 



INDEX 

'll, 4 (class) 197, 198 
Abelian theorems 218 
Abel integral equation 309 

A 

abscissa of absolute convergence 15, of convergence 17, of holomorphy 29, second power a. 212 
absolute convergence of a I!-integral 13, 14 
almost every where 21 
amplitude of an oscillation 2, 3 
anomalous system of differential equations 110, 115, 133, in the space of distributions 131 
arc of a complex number 3 
asymptotic behaviour of the image function near infinity 221, 223, near a singular point 231, 

233; of the original function near infinity 234 
asymptotic expansion 219, of the image function 228, 230; of the original function 238, 254, 

260; of the solution of the heat conduction equation 292, of the telegraph equation 300 
asymptotic power series 220 
asymptotic representation 218 

B 

band of conditional convergence of the I!-integral 18 
Bessel function Jo 56, representation by the Poisson integral 57, 169; Ja: differential equation 

263, power series expansion 265, representation as a ilB-transform 267; asymptotic ex
pansion for real values 268, 269, in the upper half-plane 229, 269 

block diagramm 84 
boundary value problem of an ordinary differential equation 86, of a partial differential 

equation 279 . 
bounded variation 152 

calculus of residues 170 
Cauchy-Schwarz inequality 206 
characteristic oscillations 95 

c 

characteristic polynomial of a differential equation 79 
characteristic solutions and values of a boundary value problem 88 
compact set 313 
comparison function 218 
compatibility conditions for the right-sided initial values of an anomalous system 118, 120 
completely monotonic function 213 
complex convolution 216, c.c. theorem 216 
complex inversion formula 157, cf inversion formula and integral 
convolution with finite limits of integration 44, with infinite limits 205, of distributions 67, 

complex c. 216; continuity 47, 49, 206, differentiation 52, 69 
convolution theorem of the Fourier transformq,tion 205, of the I!-transformation for func-

tions 46, 50, for distributions 68; complex c. tho 216 
convergence towards zero as s ..... oo of the I!-transform F(s) 141,145,146, of F(s)/s 147 
convergent I!-integral: absolutely 11, conditionally 16, simply 16 
correspondence of functions 19, of operations 30, symbol of C. 20 



Index 

D 

Pd 313, Pd' 313, Pd~ 58, Pd~ 60 (spaces) 
o (impuls) definition 59, 314, \!-transform 61, as excitation 104 
damping theorem for functions 36, for distributions 65 
derivative, generalized 41, distribution-d. 314 
differentiation of non-integral order 311, 312 

323 

differentiation theorem for original functions 40-43, for distributions 66, for image functions 
43,67 

Dirichlet integral 151, series 5 
discontinuous factor 160, 164 
distortionless line 295 
distribution 313, of finite order 58, right-sided 58; \!-transform 60, translation 64 
distribution-derivative 314, d.-d. equation 103 
disturbing function 70 
Duhamel's formula 94 

E 

eigen-oscillations 95, - solutions 88, -values 88 
entire function of exponential type 197, 257, asymptotic expansion 260 
excitation 70, 92 
explosion of heat 288 
exponential type 196 
exp (_sa) as a \!-transform 142, 187 

~ 148 
Faltung 44 
feedback 85 
Fejer's integral 202 
Fourier coefficient 2, series 1, 6 
Fourier integral 3, 6, F.i. theorem 155 

F 

Fourier transformation 148, inversion formula 154, 201 
frequency characteristics 96 
frequency of an oscillation, positive, negative 2 
frequency response (ordinary differential equation) 46, 100, determination by the step response 

96; (heat conduction equation) 292, (telegraph equation) 300 
functional 313 
function-distribution 313 
fundamental theorem 16 

G 

Gamma-function: Hankel's formula 168, transcendental addition theorem 217 
Gaussian error-function: asymptotic expansion 229 
generalized integration by parts 16 
Green's function of the boundary value problem 88, 91, of the initial value problem 84 

H 

half-plane of absolute convergence 15, of convergence 17, of holomorphy 29 
Hankel's formula for the Gamma-function 168 
heat conduction equation 279 
Heaviside unit function 7 
holomorphy 29, of the \!-transform 26, at s = 00 196, 197 
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image equation 73, function 19, space 19 
impulse 104, 314; i. response 104, 128, 132 
initial phase of an oscillation 2, 3 

Index 

I 

initial value as limit from the right 40, 70, 78, from the left 108, 122, 131 
initial value problem of an ordinary differential equation 69, of a partial differential equation 

279 
input 70,84 
integrabel: absolutely (improperly) 12, locally absolutely 12 
integral equation of the first kind 308, of the second kind 304 
integral: improper 11, 12, of non-integral order 311 
integral transformation 19 
integration theorem 36, 52 
inversion formula for the absolutely converging Il-transformation 158, for the simply converg

ing Il-transformation 179, 181, for the Ilu-transformation 157, for the Fourier transforma
tion 154, 201 

inversion integral with an angular path 161, 165, 239, 249; region of convergence 242, 246 
holomorph y of the represented function 244; cf !!B-transformation 

iterated integral expressed by a simple integral 55 
iterated kernels 306 

J 0, J a see Bessel function 
50 (class) 45 
jump of a function 71 

J 

K 

kernel 304, polynomial k. 307, reciprocal k. 305 

L 

1l19, 1l-1 20, Ilr 155, llu155 
Laplace integral 1, 5, inverse 5, two-sided 6, line of convergence 17 
Laplace transformation 19, finite 28, 181, one-sided 155, two-sided 155, 277 
Laplace transform of a distribution 60, of a positive function 212, of the product of two func

tions 215, 216 
Laurent series 5, 278 
logarithmically convex function 213 

mapping of two spaces 19 
moments of a function 21 

neighbourhood of a point 218 
Neumann series 306 
normalized function 153 

M 

N 

normal system of differential equations 110, in the space of distributions 125 
nullfunction 20 

o 56, 0 37 (order) 
one-sided Il-transformation 155 
Operator, linear 19 

o 



Index 

original equation 73, function 19, space 19 
orthogonal system of original functions and of the corresponding image functions 214 
oscillations: real 1, complex 2, harmonic 2 
oscillator 100 
output 70, 84 

p 

325 

Parseval's formula for the Fourier transformation 208, for the Il-transformation 211, for 
power series 201 

partial fraction expansion 76 
passive system 95 
periodic original function 33 
Pf (finite part) 316 
power series 5, 6, 201 
principal value of an improper integral 153 
principle of extension 74 
product of two image functions 44, of two original functions 215, 216 
proper oscillations 95 
pseudofunction (-distribution) 316, Il-transform 62 
'1p (n) 316 

Q 

quadratic mean of a Il-transform along a vertical line 212, 213 

R 

reciprocal kernel 305 
representability of a function as the Il-transform of a function 187, 188, of a distribution 191; 

as a Iln-transform 185 
response 92 
Riemann-Lebesgue lemma 143, extensions 144, 145; for an infinite interval 237 

s 
second power abscissa of the Il-transform 212 
shifting theorem, first 32, second 35, for distributions 64 
shock 104 
similarity theorem 31 
singular solutions of a boundary value problem 287, 290 
spectral density 3, function 3, sequence 2 
spectrum 2, 3 
steady state of the frequency response 95, of the step response 93 
step response 93, determination by the frequency response 97, by the frequency characteristics 

99 
strip of convergence of the Iln-transformation 155, 277 
support of a function 313, of a distribution 314 

T 

telegraph equation 294 
termwise transformation of a series expansion of the image function 193, of a power series 195, 

197 
test function 313 
theta function {}a (v, t) 200, 289, 290 
Thome's normal series 276 
three lines theorem 213 
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transfer function 84 
transient function 93 
tuning of a receiver 100 
two-dimensional convergent variable 139 
two-sided I!-transformation 155 

Index 

ta-1/r(rx) represented by a complex integral for t > 0 167, for t in the right half-plane 245, in 
an angular region 247 

u 
uniform convergence of the I!-integral 139 
uniqueness theorem of the I!-transformation 21, 181, strengthened 24 
unit step function u (t) 7, 160, 164 

V.P. (principal value) 153 
ffi-transformation 234, 244 

Weierstrass approximation theorem 21 
Weierstrass transformation 285 
weighting function 84, 128 

v 

w 

ID3-transformation 241, 244, 246, 256, 257, 260, 261, 273 



The following books by the same author appeared In 
Blrkhauser Verlag Basel und Stuttgart 

1. Elnfiihrung In Theorle und Anwendung 
der Laplace-Transformation 

Ein Lehrbuch fOr Studierende der Mathematik, Physik 
und Ingenieurwissenschaft 

351 Seiten mit 51 Figuren (1970) 
Zweite, neubearbeitete und erweiterte Auflage 

ISBN 3-7643-0086-8 
(Mathematische Reihe, Band 24 - Sammlung LMW) 

2. Handbuch der Laplace-Transformation 
In 3 Banden 

(Mathematische Reihe, Bande 14, 15 und 19 - Sammlung LMW) 

Band I: Theorie der Laplace-Transformation 
Verbesserter Nachdruck der ersten Auflage. 1971 

581 Seiten mit 40 Figuren, ISBN 3-7643-0083-3 

Band II: Anwendungen der Laplace-Transformation 
Verbesserter Nachdruck der ersten Auflage. 1972 

436 Seiten mit 48 Figuren, ISBN 3-7643-0653-X 

Band III: Anwendungen der Laplace-Transformation 
Verbesserter Nachdruck der ersten Auflage. 1973 

300 Seiten mit 23 Figuren, ISBN 3-7643-0674-4 

3. Voelker, Doetsch 
Ole zweldlmenslonale Laplace-Transformation 
Eine EinfOhrung in ihre Anwendung zur Losung 

von Randwertproplemen nebstTabelien von Korrespondenzen 
259 Seiten mit 17 Figuren und vielen Tabellen (1950) 

ISBN 3-7643-0394-8 
(Mathematische Reihe, Band 12 - Sammlung LMW) 
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