Central Processing Unit

* Introduction

» General Register Organization
« Stack Organization

* Instruction Formats

* Addressing Modes

« Data Transfer and Manipulation
* Program Control

* Reduced Instruction Set Computer

MAJOR COMPONENTS OF CPU

« Storage Components
Registers

Flags

» Execution (Processing) Components
Arithmetic Logic Unit(ALU)
Arithmetic calculations, Logical computations, Shifts/Rotates

* Transfer Components
Bus IS |
:f/a’fpf,;,
v ‘v 1
» Control Components / \/
i 8 Register
Control Unit ’ Eile \ALU
A 4
:.) = ‘.o_
‘., .",.(F

., Control Unit |

REGISTERS

« In Basic Computer, there is only one general purpose register,
the Accumulator (AC)

* In modern CPUs, there are many general purpose registers

+ |t is advantageous to have many registers
— Transfer between registers within the processor are relatively fast
- Going “off the processor” to access memory is much slower

* How many registers will be the best ?

GENERAL REGISTER ORGANIZATION

Clock

Input

R1

R2
R3
R4
R5 I
R6 | |

FRRENE!

R7

Load
(7 lines)

seLa{ MUX MUX

i
-— } SELB

SELD
OPR (ALU

3x8

1 Output

OPERATION OF CONTROL UNIT

—The control unit
Directs the information flow through ALU by
- Selecting various Components in the system
- Selecting the Function of ALU

Example: R1 « R2 +R3
[1] MUX A selector (SELA): BUS A« R2
[2] MUX B selector (SELB): BUS B « R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1 « Out Bus

3 3 3 5
Control Word [Sex] sets | sero | oee
Encoding of register selection fields Binary

Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1

010 R2 R2 R2

011 R3 R3 R3
100 R4 R4 R4
101 RS RS R5
110 R6 R6 R6
111 R7 R7 R7

]

ALU CONTROL

Encoding of ALU operations

OPR

Select Operation Symbol
00000 TransferA TSFA
00001 Increment A INCA
00010 ADDA+B ADD
00101 Subtract A-B SUB
00110 Decrement A DECA
01000 AND Aand B AND
01010 ORAandB OR
01100 XOR Aand B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

ALU CONTROL

Examples of ALU Microoperations

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word
R1«<R2-R3 R2 R3 R1 SuB 010 011 001 00101
Ré<—~R4VvR5 R4 R5 R4 OR 100 101 100 01010
R6 « R6 + 1 R6 - R6 INCA 110 000 110 00001
R7 « R1 R1 - R7 TSFA 001 000 111 00000
Output « R2 R2 - None TSFA 010 000 000 00000
Output « Input Input - None TSFA 000 000 000 00000
R4 « shl R4 R4 - R4 SHLA 100 000 100 11000
R5«0 R5 R5 R5 XOR 101 101 101 01100

REGISTER STACK ORGANIZATION

Stack

- Pointer: SP

Register Stack

Push, Pop operations

PUSH
SP « SP +1
M[SP] « DR
If (SP = 0) then (FULL « 1)
EMPTY « 0

- Only PUSH and POP operations are applicable

- Very useful feature for nested subroutines, nested interrupt services
- Also efficient for arithmetic expression evaluation
- Storage which can be accessed in LIFO

stack Address

I Initially, SP =0, EMPTY =1, FULL=0 “/

Flags —] 63
FuLL | [EmPTY]
Stack pointer 4
SP > c 3
6 bits = 2
——:
0
[DR]
POP
DR « M[SP]
SP« SP-1

If (SP = 0) then (EMPTY « 1)
FULL« 0

MEMORY STACK ORGANIZATION

o L P
Memory with Program, Data, *] (instrattions)

and Stack Segments
(2] D

| sp :: 278 2l ::: 3000
+ . sfack: . .
A.A.L.#.A‘

3997
3998
3999

1000

4000
4001
- A portion of memory is used as a stack with a Stack grows
processor register as a stack pointer In this direction

-PUSH: SP« SP-1
M[SP] « DR
-POP: DR « M[SP]
SP « SP + 1

- Most computers do not provide hardware to check stack overflow (full
stack) or underflow (empty stack) = must be done in software

REVERSE POLISH NOTATION

* Arithmetic Expressions: A+ B
A+ B Infix notation
+ AB Prefix or Polish notation
A B+ Postfix or reverse Polish notation

- The reverse Polish notation is very suitable for stack
manipulation

» Evaluation of Arithmetic Expressions

Any arithmetic expression can be expressed in parenthesis-free
Polish notation, including reverse Polish notation

(3*4)+(5*6) = 34*56*+

E"Iﬁg*tﬁ 5 "mm

6

PROCESSOR ORGANIZATION

In general, most processors are organized in one of 3
ways

Single register (Accumulator) organization

» Basic Computer is a good example

» Accumulator is the only general purpose register
General register organization

» Used by most modern computer processors

» Any of the registers can be used as the source or
destination for computer operations

Stack organization
— All operations are done using the hardware stack

— For example, an OR instruction will pop the two top
elements from the stack, do a logical OR on them, and
push the result on the stack

INSTRUCTION FORMAT

* Instruction Fields

OP-code field - specifies the operation to be performed

Address field - designates memory address(es) or a processor register(s)
Mode field -determines how the address field is to be interpreted (to
get effective address or the operand)

* The number of address fields in the instruction format
depends on the internal organization of CPU

* The three most common CPU organizations:
Single accumulator organization:

ADD X [* AC « AC + M[X] */
General register organization:

ADD R1,R2,R3 "R1«< R2+R3 7/

ADD R1,R2 FR1«<R1+R2 */

MOV R1,R2 I"R1« R2 7/

ADD R1, X " R1 « R1+ M[X] */
Stack organization:

PUSH X " TOS « M[X] */

ADD

THREE, AND TWO-ADDRESS INSTRUCTIONS

* Three-Address Instructions

Program to evaluate X=(A+B)*(C+D):

ADD R1,A, B I* R1 <« M[A] + M[B] J
ADD R2,C,D [* R2 « M[C] + M[D] J
MUL X, R1, R2 /* M[X] « R1* R2 J

- Results in short programs
- Instruction becomes long (many bits)

 Two-Address Instructions

Program to evaluate X=(A+B)*(C+D):

MOV R1, A [* R1 < M[A] .
ADD R1,B *R1 « R1 + M[A] */
MOV R2,C /* R2 « M[C] v
ADD R2,D [*R2 « R2 + M[D] */
MUL R1, R2 FR1«<R1*R2 ¥

MOV X, R1 I* M[X] < R1 +

ONE, AND ZERO-ADDRESS INSTRUCTIONS

» One-Address Instructions

- Use an implied AC register for all data manipulation
- Program to evaluate X=(A+B)*(C+D):

LOAD A I* AC « M[A] *
ADD B I* AC « AC + M[B] */
STORE T I* M[T] « AC .
LOAD c I* AC « M[C] *
ADD D /* AC « AC + M[D] */
MUL T [* AC « AC * M[T] */
STORE X I* M[X] < AC *

» Zero-Address Instructions

- Can be found in a stack-organized computer
- Program to evaluate X=(A+B)*(C+D):

PUSH & [* TOS « A *
PUSH B [* TOS« B *
ADD ¥ TOS« (A+B) *
PUSH C [* TOS « C *
PUSH D [* TOS « D *
ADD * TOS« (C+D) *
MUL ¥ TOS« (C+D)*(A+B) *

POP X * M[X] « TOS *

ADDRESSING MODES

+ Addressing Modes

* Specifies a rule for interpreting or modifying the
address field of the instruction (before the operand
is actually referenced)

* Variety of addressing modes
- to give programming flexibility to the user

- to use the bits in the address field of the
instruction efficiently

TYPES OF ADDRESSING MODES

 Implied Mode
Address of the operands are specified implicitly

In the definition of the instruction
- No need to specify address in the instruction
-EA = AC, or EA = Stack[SP]
- Examples from Basic Computer
CLA, CME, INP

* Immediate Mode
Instead of specifying the address of the operand,

operand itself is specified
- No need to specify address in the instruction
- However, operand itself needs to be specified
- Sometimes, require more bits than the address

- Fast to acquire an operand

TYPES OF ADDRESSING MODES

Register Mode
Address specified in the instruction is the register address
- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field in the instruction

- Faster to acquire an operand than the memory addressing
- EA=IR(R) (IR(R): Register field of IR)

- Register Indirect Mode
Instruction specifies a register which contains
the memory address of the operand
- Saving instruction bits since register address
is shorter than the memory address
- Slower to acquire an operand than both the

register addressing or memory addressing
- EA = [IR(R)] ([x]: Content of x)

* Autoincrement or Autodecrement Mode
- When the address in the register is used to access memory, the

value in the register is incremented or decremented by 1
automatically

TYPES OF ADDRESSING MODES

* Direct Address Mode
Instruction specifies the memory address which
can be used directly to access the memory
- Faster than the other memory addressing modes
- Too many bits are needed to specify the address

for a large physical memory space
- EA = IR(addr) (IR(addr): address field of IR)

* Indirect Addressing Mode
The address field of an instruction specifies the address of a memory
location that contains the address of the operand
- When the abbreviated address is used large physical memory can be
addressed with a relatively small number of bits
- Slow to acquire an operand because of an additional memory access
- EA = M[IR(address)]

TYPES OF ADDRESSING MODES

* Relative Addressing Modes

The Address fields of an instruction specifies the part of the address
(abbreviated address) which can be used along with a designated
register to calculate the address of the operand

- Address field of the instruction is short

- Large physical memory can be accessed with a small number of

address bits
- EA = f(IR(address), R), R is sometimes implied

3 different Relative Addressing Modes depending on R;

* PC Relative Addressing Mode (R =PC)
- EA =PC + IR(address)

* Indexed Addressing Mode (R = IX, where IX: Index Register)
-EA = IX + IR(address)

* Base Register Addressing Mode

(R = BAR, where BAR: Base Address Register)
- EA = BAR + IR(address)

ADDRESSING MODES - EXAMPLES

Address Memory
200 | Load to AC | Mode|

L_Pc=200 201 |__Address = 500
202

[Rri=a00]
399

[__xr=100_] 0

500

600

Addressing Effective Content 702
Mode Address of AC
Direct address 500 I" AC « (500) | 800
Immediate operand - I" AC « 500 *l 500 800
Indirect address 800 I" AC « ((500)) “l 300
Relative address 702 I" AC « (PC+500) °/ 325
Indexed address 600 I" AC « (RX+500) °/ 900
Register - " AC « R1 ‘Il 400
Register indirect 400 " AC « (R1) "l 700
Autoincrement 400 I" AC « (R1)+ ¢ 700
Autodecrement 399 I" AC « -‘Rz " 450

DATA TRANSFER INSTRUCTIONS

* Typical Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output ouT

Push PUSH

Pop POP

 Data Transfer Instructions with Different Addressing Modes
Mode Assembly Register Transfer
Convention

Direct address LD ADR AC « M[ADR]
Indirect address LD @ADR AC « M[M[ADR]]
Relative address LD SADR AC « M[PC + ADR]
Immediate operand LD #NBR AC « NBR
Index addressing LD ADR(X) AC « M[ADR + XR]
Register LD R1 AC « R1
Register indirect LD (R1) AC « M[R1]
Autoincrement LD (R1)+ AC « M[R1], R1 « R1 + 1
Autodecrement LD -(R1) R1« R1-1,AC « M[R1]

DATA MANIPULATION INSTRUCTIONS

. Three Basic Types: Krlt“metlc instructions

Logical and bit manipulation instructions
Shift instructions

» Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with Borrow SUBB
Negate(2's Complement) NEG

* Logical and Bit Manipulation Instructions * Shift Instructions

Name Mnemonic Name Mnemonic

Clear CLR Logical shift right SHR
Complement COM Logical shift left SHL
AND AND Arithmetic shift right SHRA
OR OR Arithmetic shift left SHLA
Exclusive-OR XOR Rotate right ROR
Clear carry CLRC Rotate left ROL
Set carry SETC Rotate right thru carry RORC
Complement carry COMC Rotate left thru carry ROLC
Enable interrupt El

Disable interrupt DI

FLAG, PROCESSOR STATUS WORD

+ In Basic Computer, the processor had several (status) flags — 1 bit
value that indicated various information about the processor’s

state - E, FGI, FGO, |, IEN, R

* In some processors, flags like these are often combined into a
register — the processor status register (PSR); sometimes called a

processor status word (PSW)

« Common flags in PSW are
- C (Carry): Setto 1 if the carry out of the ALU is 1
- S (Sign): The MSB bit of the ALU’s output
- Z (Zero): Setto 1 if the ALU’s output is all 0's
- V (Overflow): Set to 1 if there is an overflow

Status Flag Circuit

fa st

V]Z

5
o 8-bit ALU
= F7 - Fo
FI
heck for 18
zero output |

F

PROGRAM CONTROL INSTRUCTIONS

+1

In-Line Sequencing (Next instruction is fetched
from the next adjacent location in the memory)

Address from other source: Current Instruction,

Stack, etc: Branch, Conditional Branch,
Subroutine, etc

* Program Control Instructions

Name Mnemonic
Branch BR
Jump JMP
Skip SKP
Call CALL
Return RTN
Compare(by —) CMP
Test(by AND) TST

* CMP and TST instructions do not retain their
results of operations (— and AND, respectively).
They only set or clear certain Flags.

CONDITIONAL BRANCH INSTRUCTIONS

Mnemonic Branch condition Tested condition

BZ Branch if zero Z=1
BNZ Branch if not zero Z=0
BC Branch if carry C=1
BNC Branch if no carry C=0
BP Branch if plus S=0
BM Branch if minus S=1
BV Branch if overflow V=1
| BNV Branch if no overflow V=0
Unsigned compare conditions (A - B)
BHI Branch if higher A>B
BHE Branch if higher or equal A>2B
BLO Branch if lower A<B
BLOE Branch if lower or equal A<B
BE Branch if equal A=B
BNE Branch if not equal AzB
Signed compare conditions (A - B)
BGT Branch if greater than A>B
BGE Branch if greaterorequal A2B
BLT Branch if less than A<B
BLE Branch if less or equal A<B
BE Branch if equal A=B
BNE Branch if not equal AzB

SUBROUTINE CALL AND RETURN

Call subroutine

Jump to subroutine

Branch to subroutine

Branch and save return address

» Subroutine Call

* Two Most Important Operations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* Save the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

* Locations for storing Return Address

* Fixed Location in the subroutine (Memory)
* Fixed Location in memory
* In a processor Register
* In memory stack
- most efficient way

CALL
SP«SP-1
M[SP] « PC
PC <« EA

RTN
PC « M[SP]
SP « SP + 1

INTERRUPT PROCEDURE

Interrupt Procedure and Subroutine Call

- The interrupt is usually initiated by an internal or
an external signal rather than from the execution of

an instruction (except for the software interrupt)

- The address of the interrupt service program is
determined by the hardware rather than from the
address field of an instruction

- An interrupt procedure usually stores all the
information necessary to define the state of CPU
rather than storing only the PC.

The state of the CPU is determined from;
Content of the PC
Content of all processor registers
Content of status bits

Many ways of saving the CPU state
depending on the CPU architectures

PROGRAM INTERRUPT

Types of Interrupts

External interrupts
External Interrupts initiated from the outside of CPU and Memory
- |/O Device - Data transfer request or Data transfer complete
- Timing Device -+ Timeout
- Power Failure
- Operator

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program
- Register, Stack Overflow
- Divide by zero
- OP-code Violation
- Protection Violation

Software Interrupts
Both External and Internal Interrupts are initiated by the computer HW.
Software Interrupts are initiated by the executing an instruction.
- Supervisor Call -+ Switching from a user mode to the supervisor mode
- Allows to execute a certain class of operations

—_ e which are notallowed inthe usermaode |

RISC: Historical Background

IBM System/360, 1964
* The real beginning of modern computer architecture
+ Distinction between Architecture and Implementation

» Architecture: The abstract structure of a computer
seen by an assembly-language programmer

Hardware

u-program,

High-Level SOnple

Architecture
Hardware

Implementation

« Continuing growth in semiconductor memory and
microprogramming

— A much richer and complicated instruction sets
= CISC(Complex Instruction Set Computer)

ARGUMENTS ADVANCED AT THAT TIME

* Richer instruction sets would simplify compilers

* Richer instruction sets would alleviate the software crisis
- move as much functions to the hardware as possible

+ Richer instruction sets would improve architecture quality

ARCHITECTURE DESIGN PRINCIPLES - IN 70’s -

 Large microprograms would add little or nothing

to the cost of the machine
« Rapid growth of memory technology
= Large General Purpose Instruction Set

+ Microprogram is much faster than the machine instructions
« Microprogram memory is much faster than main memory
= Moving the software functions into
microprogram for the high performance machines

- Execution speed is proportional to the program size
« Architectural techniques that led to small program
= High performance instruction set

« Number of registers in CPU has limitations
« Very costly
= Difficult to utilize them efficiently

COMPLEX INSTRUCTION SET COMPUTER

+ These computers with many instructions and addressing

modes came to be known as Complex Instruction Set
Computers (CISC)

+ One goal for CISC machines was to have a machine language
instruction to match each high-level language statement type

VARIABLE LENGTH INSTRUCTIONS

* The large number of instructions and addressing modes led CISC
machines to have variable length instruction formats

+ The large number of instructions means a greater number of bits to
specify them

* In order to manage this large number of opcodes efficiently, they
were encoded with different lengths:

- More frequently used instructions were encoded using short opcodes.
- Less frequently used ones were assigned longer opcodes.

+ Also, multiple operand instructions could specify different
addressing modes for each operand

- For example,
» Operand 1 could be a directly addressed register,
» Operand 2 could be an indirectly addressed memory location,
» Operand 3 (the destination) could be an indirectly addressed register.

+ All of this led to the need to have different length instructions in
different situations, depending on the opcode and operands used

VARIABLE LENGTH INSTRUCTIONS

« For example, an instruction that only specifies register
operands may only be two bytes in length
- One byte to specify the instruction and addressing mode
- One byte to specify the source and destination registers.

* An instruction that specifies memory addresses for operands
may need five bytes
— One byte to specify the instruction and addressing mode
— Two bytes to specify each memory address
» Maybe more if there's a large amount of memory.

« Variable length instructions greatly complicate the fetch and
decode problem for a processor

* The circuitry to recognize the various instructions and to
properly fetch the required number of bytes for operands is
very complex

COMPLEX INSTRUCTION SET COMPUTER

Another characteristic of CISC computers is that they have
instructions that act directly on memory addresses

- For example,
ADD L1, L2, L3
that takes the contents of M[L1] adds it to the contents of M[L2] and stores the
result in location M[L3]

* An instruction like this takes three memory access cycles to
execute

+ That makes for a potentially very long instruction execution cycle

* The problems with CISC computers are

- The complexity of the design may slow down the processor,

- The complexity of the design may result in costly errors in the processor
design and implementation,

— Many of the instructions and addressing modes are used rarely, if ever

REDUCED INSTRUCTION SET COMPUTERS

* In the late ‘70s and early ‘80s there was a reaction to the
shortcomings of the CISC style of processors

* Reduced Instruction Set Computers (RISC) were
proposed as an alternative

« The underlying idea behind RISC processors is to
simplify the instruction set and reduce instruction
execution time

» RISC processors often feature:

— Few instructions

— Few addressing modes

— Only load and store instructions access memory

— All other operations are done using on-processor registers
— Fixed length instructions

— Single cycle execution of instructions

— The control unit is hardwired, not microprogrammed

REDUCED INSTRUCTION SET COMPUTERS

+ Since all but the load and store instructions use only registers for
operands, only a few addressing modes are needed

» By having all instructions the same length, reading them in is
easy and fast

» The fetch and decode stages are simple, looking much more like
Mano’s Basic Computer than a CISC machine

« The instruction and address formats are designed to be easy to
decode

* Unlike the variable length CISC instructions, the opcode and
register fields of RISC instructions can be decoded
simultaneously

* The control logic of a RISC processor is designed to be simple
and fast

* The control logic is simple because of the small number of
instructions and the simple addressing modes

» The control logic is hardwired, rather than microprogrammed,
because hardwired control is faster

REGISTERS

By simplifying the instructions and addressing modes, there is
space available on the chip or board of a RISC CPU for more
circuits than with a CISC processor

* This extra capacity is used to
— Pipeline instruction execution to speed up instruction execution

— Add a large number of registers to the CPU

REGISTERS

« By having a large number of general purpose registers, a
processor can minimize the number of times it needs to access
memory to load or store a value

+ This results in a significant speed up, since memory accesses
are much slower than register accesses

. Re(l;Jister accesses are fast, since they just use the bus on the
CPU itself, and any transfer can be done in one clock cycle

+ |t may take many clock cycles to read or write to memory
across the memory bus
- The memory bus hardware is usually slower than the processor
-~ There may even be competition for access to the memory bus by other
devices in the computer (e.g. disk drives)

+ So, for this reason alone, a RISC processor may have an
advantage over a comparable CISC processor, since it only

needs to access memory
- for its instructions, and
- occasionally to load or store a memory value

CIRCULAR OVERLAPPED REGISTER WINDOWS

Restinn

Save

Leved
N elrwe

Ponrer
i

-

C tog
-)

OVERLAPPED REGISTER WINDOWS

:o
=

- 210

)
-
~

Commonto Aand B

&, -
A

Localto A

Commonto Aand D

Common to all
procedures

Global
registers

OVERLAPPED REGISTER WINDOWS

There are three classes of registers:
— Global Registers
» Available to all functions
- Window local registers
» Variables local to the function
- Window shared registers
» Permit data to be shared without actually needing to copy it

Only one register window is active at a time
— The active register window is indicated by a pointer

When a function is called, a new register window is activated
— This is done by incrementing the pointer

When a function calls a new function, the high numbered
registers of the calling function window are shared with the
called function as the low numbered registers in its register
window

This way the caller’s high and the called function’s low registers
overlap and can be used to pass parameters and results

OVERLAPPED REGISTER WINDOWS

* In addition to the overlapped register windows, the processor
has some number of registers, G, that are global registers

- This is, all functions can access the global registers.

+ The advantage of overlapped register windows is that the
processor does not have to push registers on a stack to save
values and to pass parameters when there is a function call

- Conversely, pop the stack on a function return

* This saves
- Accesses to memory to access the stack.
- The cost of copying the register contents at all

* And, since function calls and returns are so common, this

results in a significant savings relative to a stack-based
approach

CHARACTERISTICS OF RISC

* RISC Characteristics

- Relatively few instructions

- Relatively few addressing modes

- Memory access limited to load and store instructions
- All operations done within the registers of the CPU

- Fixed-length, easily decoded instruction format

- Single-cycle instruction format

- Hardwired rather than microprogrammed control

* Advantages of RISC

- VLSI Realization

- Computing Speed

- Design Costs and Reliability

- High Level Language Support

ADVANTAGES OF RISC

* VLSI Realization Example:
; : RISC I: 6%
Control area is considerably reduced RISC II: 10%

MC68020: 68%
general CISCs: ~50%

= RISC chips allow a large number of registers on the chip

- Enhancement of performance and HLL support
- Higher regularization factor and lower VLSI design cost

The GaAs VLSI chip realization is possible

« Computing Speed

- Simpler, smaller control unit = faster

- Simpler instruction set; addressing modes; instruction format
= faster decoding

- Register operation = faster than memory operation

- Register window = enhances the overall speed of execution

- Identical instruction length, One cycle instruction execution
=> suitable for pipelining = faster

ADVANTAGES OF RISC

* Design Costs and Reliability

- Shorter time to design
= reduction in the overall design cost and
reduces the problem that the end product will
be obsolete by the time the design is completed

- Simpler, smaller control unit
= higher reliability

- Simple instruction format (of fixed length)
= ease of virtual memory management

* High Level Language Support

- A single choice of instruction
=> shorter, simpler compiler

- A large number of CPU registers
= more efficient code

- Register window
=> Direct support of HLL

- Reduced burden on compiler writer

